{"title":"Studies on combining ability in high yielding drought tolerant mungbean genotypes under West Bengal condition","authors":"M. Şen, D. K. De","doi":"10.18805/LR-3537","DOIUrl":null,"url":null,"abstract":"Combining ability analysis was carried out in an 8x8 half-diallel fashion in mungbean to understand the combining ability, nature of gene action for thirteen yield and its components in 28 hybrids and their 8 parents. These 8 genotypes were already classified into drought tolerant and drought susceptible types from a laboratory study where PEG (6000) (-3) bar was used to impose drought stress against control for studying the seedling characters. The analysis of variance due to combining ability for the thirteen yield attributing traits in F1 population and their parents revealed that variances due to GCA and SCA were highly significant for all the characters indicating that these traits were controlled by both additive and non-additive gene action. Results also showed that cross combinations producing significantly superior SCA effect generally involved one of the parents with good GCA effect and the other had been either medium or poor combiner. Transgressive breeding has been opined to be useful in such cases. After compilation of the results it was found that only two cross combinations viz. SML-286(S) x B-1(T) and PDM-54(T) x K-851(T) were superior performers with respect to 7 and 5 characters including yield. Therefore, progeny of these two crosses may be pursued for obtaining lines with higher yield and tolerance to drought.","PeriodicalId":18181,"journal":{"name":"Legume Research","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2018-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Legume Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.18805/LR-3537","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 1
Abstract
Combining ability analysis was carried out in an 8x8 half-diallel fashion in mungbean to understand the combining ability, nature of gene action for thirteen yield and its components in 28 hybrids and their 8 parents. These 8 genotypes were already classified into drought tolerant and drought susceptible types from a laboratory study where PEG (6000) (-3) bar was used to impose drought stress against control for studying the seedling characters. The analysis of variance due to combining ability for the thirteen yield attributing traits in F1 population and their parents revealed that variances due to GCA and SCA were highly significant for all the characters indicating that these traits were controlled by both additive and non-additive gene action. Results also showed that cross combinations producing significantly superior SCA effect generally involved one of the parents with good GCA effect and the other had been either medium or poor combiner. Transgressive breeding has been opined to be useful in such cases. After compilation of the results it was found that only two cross combinations viz. SML-286(S) x B-1(T) and PDM-54(T) x K-851(T) were superior performers with respect to 7 and 5 characters including yield. Therefore, progeny of these two crosses may be pursued for obtaining lines with higher yield and tolerance to drought.
期刊介绍:
Legume Research An International Journal. The Journal is an official publication of Agricultural Research Communication Centre. It is designed to bring out the original research articles on genetics, breeding, physiology, bacterial avtivity, production, quality, biochemistry and seeds of legumes crops. The objective of the journal is to serve as a forum for scientific community to publish their research findings on legumes ans to provide basis for new research. Journal is being scanned in the important indexing and abstracting services.