Evaluating the Accuracy of Chebyshev’s Inequality for Probability Calculation: A Simulation Study

Tasmiah Afrin Emma, A. Sajib, Sabina Sharmin
{"title":"Evaluating the Accuracy of Chebyshev’s Inequality for Probability Calculation: A Simulation Study","authors":"Tasmiah Afrin Emma, A. Sajib, Sabina Sharmin","doi":"10.3329/dujs.v71i1.65276","DOIUrl":null,"url":null,"abstract":"This paper aims to evaluate the accuracy of probability calculation using Chebyshev’s inequality based on simulation study. We consider symmetric (Normal (3,1.52 ), Laplace (3, 2  ) Beta (7.7 ) t5) positively skewed, negatively skewed (5 χ2,  Beta (3, 8  ) Gamma (5,1)), (Beta (7, 2)), Exponential (5) and Uniform (0, 1 ) distributions, fx(x) in our simulation study to measure the performance of Chebyshev’s inequality. We then calculate Pr (μ − kσ ≤ X ≤ μ + kσ ) for ~ ( ) X X f x , μ = E ( X ) and σ 2 =Var ( X ), and compare this with the approximated probability obtained from Chebyshev’s inequality to measure the accuracy of Chebyshev’s inequality. From our simulation study, it is observed that loss due to using Chebyshev’s inequality for probability calculation is the least and the maximum when fx(x) is the Exponential and the Beta (symmetric) distributions, respectively for k ≥ 2.5. Moreover, the value of Pr (μ − kσ ≤ X ≤ μ + kσ ) calculated using Chebyshev’s inequality is underapproximated for all the probability distributions considered in the study.\nDhaka Univ. J. Sci. 71(1): 76-81, 2023 (Jan)","PeriodicalId":11280,"journal":{"name":"Dhaka University Journal of Science","volume":"157 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dhaka University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/dujs.v71i1.65276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to evaluate the accuracy of probability calculation using Chebyshev’s inequality based on simulation study. We consider symmetric (Normal (3,1.52 ), Laplace (3, 2  ) Beta (7.7 ) t5) positively skewed, negatively skewed (5 χ2,  Beta (3, 8  ) Gamma (5,1)), (Beta (7, 2)), Exponential (5) and Uniform (0, 1 ) distributions, fx(x) in our simulation study to measure the performance of Chebyshev’s inequality. We then calculate Pr (μ − kσ ≤ X ≤ μ + kσ ) for ~ ( ) X X f x , μ = E ( X ) and σ 2 =Var ( X ), and compare this with the approximated probability obtained from Chebyshev’s inequality to measure the accuracy of Chebyshev’s inequality. From our simulation study, it is observed that loss due to using Chebyshev’s inequality for probability calculation is the least and the maximum when fx(x) is the Exponential and the Beta (symmetric) distributions, respectively for k ≥ 2.5. Moreover, the value of Pr (μ − kσ ≤ X ≤ μ + kσ ) calculated using Chebyshev’s inequality is underapproximated for all the probability distributions considered in the study. Dhaka Univ. J. Sci. 71(1): 76-81, 2023 (Jan)
评价切比雪夫不等式在概率计算中的准确性:模拟研究
本文旨在通过仿真研究,评价利用切比雪夫不等式进行概率计算的准确性。在我们的模拟研究中,我们考虑对称(Normal(3,1.52),拉普拉斯(3,2)Beta (7.7) t5)正偏态,负偏态(5 χ2, Beta (3,8) Gamma (5,1)), (Beta(7,2)),指数(5)和均匀(0,1)分布,fx(x)来衡量Chebyshev不等式的性能。然后我们计算了~ ()X X f X, μ = E (X)和σ 2 =Var (X)的Pr (μ−kσ≤X≤μ + kσ),并将其与由Chebyshev不等式得到的近似概率进行比较,以衡量Chebyshev不等式的精度。从我们的模拟研究中可以观察到,当k≥2.5时,fx(x)为指数分布和Beta(对称)分布时,使用Chebyshev不等式进行概率计算的损失分别最小和最大。此外,用Chebyshev不等式计算的Pr (μ−kσ≤X≤μ + kσ)的值对于研究中考虑的所有概率分布都是过近似值。达卡大学学报(自然科学版),71(1):76- 81,2023 (1)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信