Tropical Monte Carlo quadrature for Feynman integrals

IF 1.5 Q2 PHYSICS, MATHEMATICAL
M. Borinsky
{"title":"Tropical Monte Carlo quadrature for Feynman integrals","authors":"M. Borinsky","doi":"10.4171/AIHPD/158","DOIUrl":null,"url":null,"abstract":"We introduce a new method to evaluate algebraic integrals over the simplex numerically. It improves upon geometric sector decomposition by employing tools from tropical geometry. The method can be improved further by exploiting the geometric structure of the underlying integrand. As an illustration of this, we give a specialized algorithm for a class of integrands that exhibit the form of a generalized permutahedron. This class includes integrands for scattering amplitudes and parametric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided with which Feynman integrals up to loop order 17 can be evaluated.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":"37 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/AIHPD/158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 34

Abstract

We introduce a new method to evaluate algebraic integrals over the simplex numerically. It improves upon geometric sector decomposition by employing tools from tropical geometry. The method can be improved further by exploiting the geometric structure of the underlying integrand. As an illustration of this, we give a specialized algorithm for a class of integrands that exhibit the form of a generalized permutahedron. This class includes integrands for scattering amplitudes and parametric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided with which Feynman integrals up to loop order 17 can be evaluated.
费曼积分的热带蒙特卡罗正交
本文提出了一种计算单纯形上代数积分的新方法。它利用热带几何学的工具改进了几何扇区分解。该方法可以通过利用底层被积函数的几何结构进一步改进。为了说明这一点,我们给出了一类表现出广义复面体形式的被积的一个特殊算法。本课程包括散射振幅的积分和参数费曼积分。提供了一个概念验证实现,可以计算循环阶为17的费曼积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信