Observed features of the water masses in the Halmahera Sea in November 2016

M. R. Iskandar, A. Purwandana, D. Surinati, Wang-gang Zheng
{"title":"Observed features of the water masses in the Halmahera Sea in November 2016","authors":"M. R. Iskandar, A. Purwandana, D. Surinati, Wang-gang Zheng","doi":"10.14710/ik.ijms.26.4.225-236","DOIUrl":null,"url":null,"abstract":"Halmahera Sea is one of the locations in the eastern route of Indonesian Throughflow (ITF), where high salinity water is mainly transported by the ITF. The description of water mass in the Halmahera Sea from the perspective of water mass, and related mixing is important. It is not only useful for understanding water mass features, but it can also be used to determine the strength of the turbulent mixing, and so allow how it relates to the water transformation. Here, we report the water mass properties and estimation of mixing quantities in the Halmahera Sea from the CTD profiles based on recent onboard observations during the IOCAS cruise in November 2016. The water mass analysis was done by examining the characteristics of water types in the Temperature-Salinity (T-S) diagram. The mixing estimation uses the density profile derived from temperature and salinity profiles and the quantification of vertical turbulence observed by density overturn. Halmahera Sea is to be found as the location where the thermocline salinity changes abruptly, it is shown from the erosion of salinity maximum in the density of 22-26σθ decreased from the north to the south of the basin. It is associated with strong mixing with spots of higher vertical diffusivity in the thermocline and intermediate layer. In the upper layer, the mixed layer depth in the Halmahera Sea is relatively shallow with an average of about 16.95 m and it is associated with weak wind stress during this month.","PeriodicalId":13381,"journal":{"name":"ILMU KELAUTAN: Indonesian Journal of Marine Sciences","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ILMU KELAUTAN: Indonesian Journal of Marine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ik.ijms.26.4.225-236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Halmahera Sea is one of the locations in the eastern route of Indonesian Throughflow (ITF), where high salinity water is mainly transported by the ITF. The description of water mass in the Halmahera Sea from the perspective of water mass, and related mixing is important. It is not only useful for understanding water mass features, but it can also be used to determine the strength of the turbulent mixing, and so allow how it relates to the water transformation. Here, we report the water mass properties and estimation of mixing quantities in the Halmahera Sea from the CTD profiles based on recent onboard observations during the IOCAS cruise in November 2016. The water mass analysis was done by examining the characteristics of water types in the Temperature-Salinity (T-S) diagram. The mixing estimation uses the density profile derived from temperature and salinity profiles and the quantification of vertical turbulence observed by density overturn. Halmahera Sea is to be found as the location where the thermocline salinity changes abruptly, it is shown from the erosion of salinity maximum in the density of 22-26σθ decreased from the north to the south of the basin. It is associated with strong mixing with spots of higher vertical diffusivity in the thermocline and intermediate layer. In the upper layer, the mixed layer depth in the Halmahera Sea is relatively shallow with an average of about 16.95 m and it is associated with weak wind stress during this month.
2016年11月Halmahera海水团观测特征
Halmahera海是印度尼西亚通流(ITF)东线的位置之一,高盐度水主要由ITF输送。从水团及其混合的角度描述哈马黑拉海的水团是很重要的。它不仅有助于理解水的质量特征,而且还可以用来确定湍流混合的强度,从而了解它与水转化的关系。在这里,我们根据2016年11月IOCAS巡航期间的最新船上观测数据,报告了Halmahera海的水质量特性和混合量的估计。水质量分析是通过检查温度-盐度(T-S)图中水类型的特征来完成的。混合估计使用由温度和盐度剖面导出的密度剖面和密度翻转观测到的垂直湍流的量化。哈马黑拉海是温跃层盐度突变的位置,从盐度的侵蚀可以看出,盐度在22-26σθ的密度由北向南递减。它与温跃层和中间层中垂直扩散系数较高的点的强混合有关。在上层,Halmahera海混合层深度相对较浅,平均约为16.95 m,本月与弱风应力有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信