Insulating regime of an underdamped current-biased Josephson junction supporting Z3 and Z4 parafermions

A. Svetogorov, D. Loss, J. Klinovaja
{"title":"Insulating regime of an underdamped current-biased Josephson junction supporting \nZ3\n and \nZ4\n parafermions","authors":"A. Svetogorov, D. Loss, J. Klinovaja","doi":"10.1103/PhysRevB.103.L180505","DOIUrl":null,"url":null,"abstract":"We study analytically a current-biased topological Josephson junction supporting $\\mathbb{Z}_n$ parafermions. First, we show that in an infinite-size system a pair of parafermions on the junction can be in $n$ different states; the $2\\pi{n}$ periodicity of the phase potential of the junction results in a significant suppression of the maximal current $I_m$ for an insulating regime of the underdamped junction. Second, we study the behaviour of a realistic finite-size system with avoided level crossings characterized by splitting $\\delta$. We consider two limiting cases: when the phase evolution may be considered adiabatic, which results in decreased periodicity of the effective potential, and the opposite case, when Landau-Zener transitions restore the $2\\pi{n}$ periodicity of the phase potential. The resulting current $I_m$ is exponentially different in the opposite limits, which allows us to propose a new detection method to establish the appearance of parafermions in the system experimentally, based on measuring $I_m$ at different values of the splitting $\\delta$.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L180505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study analytically a current-biased topological Josephson junction supporting $\mathbb{Z}_n$ parafermions. First, we show that in an infinite-size system a pair of parafermions on the junction can be in $n$ different states; the $2\pi{n}$ periodicity of the phase potential of the junction results in a significant suppression of the maximal current $I_m$ for an insulating regime of the underdamped junction. Second, we study the behaviour of a realistic finite-size system with avoided level crossings characterized by splitting $\delta$. We consider two limiting cases: when the phase evolution may be considered adiabatic, which results in decreased periodicity of the effective potential, and the opposite case, when Landau-Zener transitions restore the $2\pi{n}$ periodicity of the phase potential. The resulting current $I_m$ is exponentially different in the opposite limits, which allows us to propose a new detection method to establish the appearance of parafermions in the system experimentally, based on measuring $I_m$ at different values of the splitting $\delta$.
支持Z3和Z4参量的欠阻尼偏流约瑟夫森结的绝缘状态
我们分析地研究了支持$\mathbb{Z}_n$对偶子的电流偏置拓扑约瑟夫森结。首先,我们证明了在无穷大的系统中,结点上的一对参量可以处于$n$不同的状态;对于欠阻尼结的绝缘状态,结相电位的$2\pi{n}$周期性导致最大电流的显著抑制$I_m$。其次,我们研究了一个现实的有限大小系统的行为,该系统具有以分裂$\delta$为特征的避免平交道口。我们考虑了两种极限情况:当相演化可以被认为是绝热的,这导致有效势的周期性降低;相反的情况下,当朗道-齐纳跃迁恢复相势的$2\pi{n}$周期性。由此产生的电流$I_m$在相反的极限上呈指数级不同,这使我们能够提出一种新的检测方法,通过测量$I_m$在不同分裂$\delta$值时的实验来建立系统中参量的外观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信