{"title":"Stable model reduction for linear variational inequalities with parameter-dependent constraints","authors":"Idrissa Niakh, G. Drouet, V. Ehrlacher, A. Ern","doi":"10.1051/m2an/2022077","DOIUrl":null,"url":null,"abstract":"We consider model reduction for linear variational inequalities with parameter-dependent constraints. We study the stability of the reduced problem in the context of a dualized formulation of the constraints using Lagrange multipliers. Our main result is an algorithm that guarantees inf-sup stability of the reduced problem. The algorithm is computationally effective since it can be performed in the offline phase even for parameter-dependent constraints. Moreover, we also propose a modification of the Cone Projected Greedy algorithm so as to avoid ill-conditioning issues when manipulating the reduced dual basis. Our results are illustrated numerically on the frictionless Hertz contact problem between two half-spheres with parameter-dependent radius and on the membrane obstacle problem with parameter-dependent obstacle geometry.","PeriodicalId":50499,"journal":{"name":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique et Analyse Numerique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/m2an/2022077","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
We consider model reduction for linear variational inequalities with parameter-dependent constraints. We study the stability of the reduced problem in the context of a dualized formulation of the constraints using Lagrange multipliers. Our main result is an algorithm that guarantees inf-sup stability of the reduced problem. The algorithm is computationally effective since it can be performed in the offline phase even for parameter-dependent constraints. Moreover, we also propose a modification of the Cone Projected Greedy algorithm so as to avoid ill-conditioning issues when manipulating the reduced dual basis. Our results are illustrated numerically on the frictionless Hertz contact problem between two half-spheres with parameter-dependent radius and on the membrane obstacle problem with parameter-dependent obstacle geometry.
期刊介绍:
M2AN publishes original research papers of high scientific quality in two areas: Mathematical Modelling, and Numerical Analysis. Mathematical Modelling comprises the development and study of a mathematical formulation of a problem. Numerical Analysis comprises the formulation and study of a numerical approximation or solution approach to a mathematically formulated problem.
Papers should be of interest to researchers and practitioners that value both rigorous theoretical analysis and solid evidence of computational relevance.