THE NECESSARY CONDITION FOR COINCIDENCE OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS

IF 0.1
M. Savkina
{"title":"THE NECESSARY CONDITION FOR COINCIDENCE OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS","authors":"M. Savkina","doi":"10.17721/2706-9699.2022.2.14","DOIUrl":null,"url":null,"abstract":"At the paper a linear regression model whose function has the form $f (x)=ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0,x_1,...,x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the symmetric Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the $(k+1)$th, are zero, $k=n/2$, $n$ — even. Elements of the main diagonal are denoted by $\\lambda$, elements of the $k$th diagonal are denoted by $c$, elements of the $j$th diagonal are denoted by $c_{k-j}$, $j=1,2,...,k-1$. The theorem proved in the article states that the following condition on the elements of such covariance matrix $c_j=\\bigl(k/(k+1)\\bigr)^j c$, $j=1,2,...,k-1$, is necessary for the coincidence of the LS and Aitken's estimations of the parameter $a$ of this model. Values $\\lambda$ and $c$ are any that ensure the positive definiteness of such matrix.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

At the paper a linear regression model whose function has the form $f (x)=ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0,x_1,...,x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the symmetric Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the $(k+1)$th, are zero, $k=n/2$, $n$ — even. Elements of the main diagonal are denoted by $\lambda$, elements of the $k$th diagonal are denoted by $c$, elements of the $j$th diagonal are denoted by $c_{k-j}$, $j=1,2,...,k-1$. The theorem proved in the article states that the following condition on the elements of such covariance matrix $c_j=\bigl(k/(k+1)\bigr)^j c$, $j=1,2,...,k-1$, is necessary for the coincidence of the LS and Aitken's estimations of the parameter $a$ of this model. Values $\lambda$ and $c$ are any that ensure the positive definiteness of such matrix.
在相关偏差情况下,线性回归模型的高系数ls和Aitken估计符合的必要条件
本文研究了函数形式为$f (x)=ax + b$, $a$和$b$ -未知参数的线性回归模型。函数$f(x)$的近似值(观测值)在等距点$x_0,x_1,…,x_n$的线段。并假设偏差的协方差矩阵为对称的Toeplitz矩阵。在所有Toeplitz矩阵中,选择一组矩阵,其中从$(k+1)$th开始,与主矩阵平行的所有对角线均为0,$k=n/2$, $n$ -偶数。主对角线上的元素用$\lambda$表示,第k$对角线上的元素用$c$表示,第j$对角线上的元素用$c_{k-j}$表示,$j=1,2,…,k-1$。本文证明了协方差矩阵$c_j=\bigl(k/(k+1)\bigr)^j c$, $j=1,2,…,k-1$,对于该模型参数$a$的LS和Aitken估计的重合是必要的。值$\ λ $和$c$是保证这种矩阵的正确定性的任意值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信