{"title":"Factoring multi-power RSA moduli with primes sharing least or most significant bits","authors":"Omar Akchiche, O. Khadir","doi":"10.1515/gcc-2016-0002","DOIUrl":null,"url":null,"abstract":"Abstract We study the factorization of a balanced multi-power RSA moduli N = prq when the unknown primes p and q share t least or most significant bits. We show that if t ≥ 1/(1+r)log p, then it is possible to compute the prime decomposition of N in polynomial time in log N. This result can be used to mount attacks against several cryptographic protocols that are based on the moduli N.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"27 1","pages":"47 - 54"},"PeriodicalIF":0.1000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We study the factorization of a balanced multi-power RSA moduli N = prq when the unknown primes p and q share t least or most significant bits. We show that if t ≥ 1/(1+r)log p, then it is possible to compute the prime decomposition of N in polynomial time in log N. This result can be used to mount attacks against several cryptographic protocols that are based on the moduli N.