Particle Filters and Data Assimilation

P. Fearnhead, H. Kunsch
{"title":"Particle Filters and Data Assimilation","authors":"P. Fearnhead, H. Kunsch","doi":"10.1146/annurev-statistics-031017-100232","DOIUrl":null,"url":null,"abstract":"State-space models can be used to incorporate subject knowledge on the underlying dynamics of a time series by the introduction of a latent Markov state process. A user can specify the dynamics of this process together with how the state relates to partial and noisy observations that have been made. Inference and prediction then involve solving a challenging inverse problem: calculating the conditional distribution of quantities of interest given the observations. This article reviews Monte Carlo algorithms for solving this inverse problem, covering methods based on the particle filter and the ensemble Kalman filter. We discuss the challenges posed by models with high-dimensional states, joint estimation of parameters and the state, and inference for the history of the state process. We also point out some potential new developments that will be important for tackling cutting-edge filtering applications.","PeriodicalId":8446,"journal":{"name":"arXiv: Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-031017-100232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

State-space models can be used to incorporate subject knowledge on the underlying dynamics of a time series by the introduction of a latent Markov state process. A user can specify the dynamics of this process together with how the state relates to partial and noisy observations that have been made. Inference and prediction then involve solving a challenging inverse problem: calculating the conditional distribution of quantities of interest given the observations. This article reviews Monte Carlo algorithms for solving this inverse problem, covering methods based on the particle filter and the ensemble Kalman filter. We discuss the challenges posed by models with high-dimensional states, joint estimation of parameters and the state, and inference for the history of the state process. We also point out some potential new developments that will be important for tackling cutting-edge filtering applications.
粒子滤波与数据同化
状态空间模型可以通过引入潜在马尔可夫状态过程来将时间序列的基本动态的主题知识结合起来。用户可以指定这个过程的动态,以及状态如何与已经进行的部分和嘈杂的观察相关联。然后,推理和预测涉及解决一个具有挑战性的反问题:计算给定观测值的感兴趣数量的条件分布。本文回顾了蒙特卡罗算法用于解决这一反问题,包括基于粒子滤波和集合卡尔曼滤波的方法。我们讨论了具有高维状态的模型所带来的挑战,参数和状态的联合估计,以及状态过程历史的推断。我们还指出了一些潜在的新发展,这些发展对于解决尖端过滤应用程序非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信