A d1/2+o(1) Monotonicity Tester for Boolean Functions on d-Dimensional Hypergrids

Hadley Black, Deeparnab Chakrabarty, C. Seshadhri
{"title":"A d1/2+o(1) Monotonicity Tester for Boolean Functions on d-Dimensional Hypergrids","authors":"Hadley Black, Deeparnab Chakrabarty, C. Seshadhri","doi":"10.48550/arXiv.2304.01416","DOIUrl":null,"url":null,"abstract":"Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \\to \\{0,1\\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\\widetilde{O}(\\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\\widetilde{O}(\\varepsilon^{-2} n^3\\sqrt{d})$ and $\\widetilde{O}(\\varepsilon^{-2} n\\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$. In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $O(\\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\\mathbb{R}^d \\to \\{0,1\\}$ associated with an arbitrary product measure.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \to \{0,1\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$ and $\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$. In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $O(\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\mathbb{R}^d \to \{0,1\}$ associated with an arbitrary product measure.
d维超网格上布尔函数的d1/2+o(1)单调性检验
超网格($f:[n]^d \to \{0,1\}$)上布尔函数的单调性测试是性能测试中的一个经典课题。确定该问题的非自适应复杂性是一个重要的开放性问题。对于任意$n$, [Black-Chakrabarty-Seshadhri, SODA 2020]描述了一个具有查询复杂性的测试器$\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$。这种复杂性与$n$无关,但对$d$的依赖性不是最优的。最近,[Braverman-Khot-Kindler-Minzer, ITCS 2023]和[Black-Chakrabarty-Seshadhri, STOC 2023]分别描述了$\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$和$\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$ -查询测试器。这些测试人员对$d$的依赖几乎是最优的,但对$n$的依赖是次优的多项式。在本文中,我们描述了一个查询复杂度$O(\varepsilon^{-2} d^{1/2 + o(1)})$独立于$n$的非自适应单侧单调性测试器。直到$d^{o(1)}$ -因子,我们的结果解决了超网格上布尔函数单调性测试的非自适应复杂性。$n$的独立性为与任意产品度量相关联的布尔函数$f:\mathbb{R}^d \to \{0,1\}$产生了一个非自适应的单向$O(\varepsilon^{-2} d^{1/2 + o(1)})$查询单调性测试器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信