{"title":"A d1/2+o(1) Monotonicity Tester for Boolean Functions on d-Dimensional Hypergrids","authors":"Hadley Black, Deeparnab Chakrabarty, C. Seshadhri","doi":"10.48550/arXiv.2304.01416","DOIUrl":null,"url":null,"abstract":"Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \\to \\{0,1\\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\\widetilde{O}(\\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\\widetilde{O}(\\varepsilon^{-2} n^3\\sqrt{d})$ and $\\widetilde{O}(\\varepsilon^{-2} n\\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$. In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $O(\\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\\mathbb{R}^d \\to \\{0,1\\}$ associated with an arbitrary product measure.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Monotonicity testing of Boolean functions on the hypergrid, $f:[n]^d \to \{0,1\}$, is a classic topic in property testing. Determining the non-adaptive complexity of this problem is an important open question. For arbitrary $n$, [Black-Chakrabarty-Seshadhri, SODA 2020] describe a tester with query complexity $\widetilde{O}(\varepsilon^{-4/3}d^{5/6})$. This complexity is independent of $n$, but has a suboptimal dependence on $d$. Recently, [Braverman-Khot-Kindler-Minzer, ITCS 2023] and [Black-Chakrabarty-Seshadhri, STOC 2023] describe $\widetilde{O}(\varepsilon^{-2} n^3\sqrt{d})$ and $\widetilde{O}(\varepsilon^{-2} n\sqrt{d})$-query testers, respectively. These testers have an almost optimal dependence on $d$, but a suboptimal polynomial dependence on $n$. In this paper, we describe a non-adaptive, one-sided monotonicity tester with query complexity $O(\varepsilon^{-2} d^{1/2 + o(1)})$, independent of $n$. Up to the $d^{o(1)}$-factors, our result resolves the non-adaptive complexity of monotonicity testing for Boolean functions on hypergrids. The independence of $n$ yields a non-adaptive, one-sided $O(\varepsilon^{-2} d^{1/2 + o(1)})$-query monotonicity tester for Boolean functions $f:\mathbb{R}^d \to \{0,1\}$ associated with an arbitrary product measure.