Role of anharmonicity binding energy on the transition dynamics of GaAs quantum dot in presence of noise

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Swarnab Datta, Bhaskar Bhakti, Manas Ghosh
{"title":"Role of anharmonicity binding energy on the transition dynamics of GaAs quantum dot in presence of noise","authors":"Swarnab Datta,&nbsp;Bhaskar Bhakti,&nbsp;Manas Ghosh","doi":"10.1007/s12648-023-02901-x","DOIUrl":null,"url":null,"abstract":"<div><p>Present enquiry thoroughly explores the <i>time-average excitation rate</i> (<i>TAER</i>) of <i>GaAs quantum dot</i> (<i>QD</i>) pursuing the change in the <i>anharmonicity binding energy</i> (<i>ABE</i>) of the system and under the supervision of <i>Gaussian white noise</i> (<i>GWN</i>). The promotion of the ground state electronic density occurs due to various kinds of time-varying fluctuations viz. <i>simple sinusoidal field</i> (<i>SSF</i>), <i>time-dependent confinement potential</i> (<i>TDCP</i>), <i>time-dependent magnetic field</i> (<i>TDMF</i>), <i>polychromatic radiation field</i> (<i>PRF</i>), <i>pulsed field</i> (<i>PF</i>), <i>chirped pulsed field</i> (<i>CPF</i>), <i>time-dependent anharmonicity constant</i> (<i>TDAC</i>) and <i>time-dependent noise strength</i> (<i>TDNS</i>). GWN couples with the QD by <i>additive</i> and <i>multiplicative</i> modes. The work analyzes the consequence of joint influence of a few parameters that guides the attributes of the TAER diagrams. These parameters involve <i>ABE</i>, inclusion of GWN in a given pathway, the parity of the anharmonic potential and the type of the time-dependent perturbations. The TAER curves are enriched with steadfast rise, steadfast diminish, maximization (relevant to generation of large <i>nonlinear optical properties</i>), minimization and saturation (suggesting <i>dynamic freezing</i>). The findings highlight the utility of different kinds of time-dependent fluctuations to fine-tune the TAER among the <i>GaAs</i> QD eigenfunctions when the <i>ABE</i> of QD carries out a continual change.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"98 4","pages":"1247 - 1258"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-023-02901-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Present enquiry thoroughly explores the time-average excitation rate (TAER) of GaAs quantum dot (QD) pursuing the change in the anharmonicity binding energy (ABE) of the system and under the supervision of Gaussian white noise (GWN). The promotion of the ground state electronic density occurs due to various kinds of time-varying fluctuations viz. simple sinusoidal field (SSF), time-dependent confinement potential (TDCP), time-dependent magnetic field (TDMF), polychromatic radiation field (PRF), pulsed field (PF), chirped pulsed field (CPF), time-dependent anharmonicity constant (TDAC) and time-dependent noise strength (TDNS). GWN couples with the QD by additive and multiplicative modes. The work analyzes the consequence of joint influence of a few parameters that guides the attributes of the TAER diagrams. These parameters involve ABE, inclusion of GWN in a given pathway, the parity of the anharmonic potential and the type of the time-dependent perturbations. The TAER curves are enriched with steadfast rise, steadfast diminish, maximization (relevant to generation of large nonlinear optical properties), minimization and saturation (suggesting dynamic freezing). The findings highlight the utility of different kinds of time-dependent fluctuations to fine-tune the TAER among the GaAs QD eigenfunctions when the ABE of QD carries out a continual change.

非谐波结合能对存在噪声的砷化镓量子点跃迁动力学的作用
目前的研究深入探讨了砷化镓量子点(QD)在高斯白噪声(GWN)作用下,随着系统非谐波束缚能(ABE)的变化而产生的时间平均激发率(TAER)。基态电子密度的提升源于各种时变波动,即简单正弦场(SSF)、随时间变化的约束势(TDCP)、随时间变化的磁场(TDMF)、多色辐射场(PRF)、脉冲场(PF)、啁啾脉冲场(CPF)、随时间变化的非谐波常数(TDAC)和随时间变化的噪声强度(TDNS)。GWN 通过加法和乘法模式与 QD 耦合。这项工作分析了指导 TAER 图表属性的几个参数共同影响的结果。这些参数包括 ABE、给定通路中包含的 GWN、非谐势的奇偶性以及随时间变化的扰动类型。TAER 曲线包含了稳定上升、稳定下降、最大化(与大型非线性光学特性的产生有关)、最小化和饱和(表明动态冻结)。这些发现突出表明,当 GaAs QD 的 ABE 发生持续变化时,不同种类的随时间变化的波动对微调 GaAs QD 特征函数之间的 TAER 非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信