Spatial Equidistribution of Binomial Coefficients Modulo Prime Powers

G. Barat, P. Grabner
{"title":"Spatial Equidistribution of Binomial Coefficients Modulo Prime Powers","authors":"G. Barat, P. Grabner","doi":"10.1515/udt-2016-0017","DOIUrl":null,"url":null,"abstract":"Abstract The spatial distribution of binomial coefficients in residue classes modulo prime powers is studied. It is proved inter alia that empirical distribution of the points (k,m)p−m with 0 ≤ k ≤ n < pm and (nk)≡a (mod⁡ p)s $\\left( {\\matrix{n \\cr k \\cr } } \\right) \\equiv a\\left( {\\bmod \\;p} \\right)^s $ (for (a, p) = 1) for m→∞ tends to the Hausdorff measure on the “p-adic Sierpiński gasket”, a fractals studied earlier by von Haeseler, Peitgen, and Skordev.","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"61 1","pages":"151 - 161"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/udt-2016-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract The spatial distribution of binomial coefficients in residue classes modulo prime powers is studied. It is proved inter alia that empirical distribution of the points (k,m)p−m with 0 ≤ k ≤ n < pm and (nk)≡a (mod⁡ p)s $\left( {\matrix{n \cr k \cr } } \right) \equiv a\left( {\bmod \;p} \right)^s $ (for (a, p) = 1) for m→∞ tends to the Hausdorff measure on the “p-adic Sierpiński gasket”, a fractals studied earlier by von Haeseler, Peitgen, and Skordev.
模素数幂的二项式系数的空间均匀分布
摘要研究了模素幂的剩余类二项式系数的空间分布。除其他外,证明了点(k,m)p−m当0≤k≤n < pm且(nk)≡a (mod (p)s $\left( {\matrix{n \cr k \cr } } \right) \equiv a\left( {\bmod \;p} \right)^s $ (for (a, p) = 1)对于m→∞在“p-adic Sierpiński gasket”上的经验分布趋向于Hausdorff测量,这是von Haeseler, Peitgen和Skordev早先研究过的分形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信