Feature Selection Using Cubic Smoothing Spline and Robust Regression

Övünç Polat
{"title":"Feature Selection Using Cubic Smoothing Spline and Robust Regression","authors":"Övünç Polat","doi":"10.7212/ZKUFBD.V8I1.717","DOIUrl":null,"url":null,"abstract":"An efficient feature selection approach based on the combination of cubic smoothing spline and robust regression is presented for classification applications in this study. Six different data sets are used to test the proposed feature selection algorithm. The success of proposed algorithm is evaluated by using K-Nearest Neighbor (KNN) algorithm and Discriminant analysis. Obtained simulation results show that proposed feature selection approach has high classification accuracy rate with fewer number of features.","PeriodicalId":17742,"journal":{"name":"Karaelmas Science and Engineering Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Karaelmas Science and Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7212/ZKUFBD.V8I1.717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient feature selection approach based on the combination of cubic smoothing spline and robust regression is presented for classification applications in this study. Six different data sets are used to test the proposed feature selection algorithm. The success of proposed algorithm is evaluated by using K-Nearest Neighbor (KNN) algorithm and Discriminant analysis. Obtained simulation results show that proposed feature selection approach has high classification accuracy rate with fewer number of features.
基于三次平滑样条和鲁棒回归的特征选择
本文提出了一种基于三次光滑样条和鲁棒回归相结合的特征选择方法。使用六个不同的数据集来测试所提出的特征选择算法。通过k -最近邻(KNN)算法和判别分析对该算法的有效性进行了评价。仿真结果表明,所提出的特征选择方法在特征数量较少的情况下具有较高的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信