Application of reinforcement learning to requirements engineering: requirements tracing

Hakim Sultanov, J. Hayes
{"title":"Application of reinforcement learning to requirements engineering: requirements tracing","authors":"Hakim Sultanov, J. Hayes","doi":"10.1109/RE.2013.6636705","DOIUrl":null,"url":null,"abstract":"We posit that machine learning can be applied to effectively address requirements engineering problems. Specifically, we present a requirements traceability method based on the machine learning technique Reinforcement Learning (RL). The RL method demonstrates a rather targeted generation of candidate links between textual requirements artifacts (high level requirements traced to low level requirements, for example). The technique has been validated using two real-world datasets from two problem domains. Our technique demonstrated statistically significant better results than the Information Retrieval technique.","PeriodicalId":6342,"journal":{"name":"2013 21st IEEE International Requirements Engineering Conference (RE)","volume":"47 1","pages":"52-61"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st IEEE International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE.2013.6636705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

We posit that machine learning can be applied to effectively address requirements engineering problems. Specifically, we present a requirements traceability method based on the machine learning technique Reinforcement Learning (RL). The RL method demonstrates a rather targeted generation of candidate links between textual requirements artifacts (high level requirements traced to low level requirements, for example). The technique has been validated using two real-world datasets from two problem domains. Our technique demonstrated statistically significant better results than the Information Retrieval technique.
强化学习在需求工程中的应用:需求跟踪
我们假设机器学习可以有效地应用于解决需求工程问题。具体来说,我们提出了一种基于机器学习技术强化学习(RL)的需求追溯方法。RL方法演示了文本需求工件(例如,高级别需求跟踪到低级别需求)之间的候选链接的相当有针对性的生成。该技术已经使用来自两个问题域的两个真实数据集进行了验证。我们的技术比信息检索技术显示了统计上显著的更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信