Contextual Reliability: When Different Features Matter in Different Contexts

Gaurav R. Ghosal, Amrith Rajagopal Setlur, Daniel S. Brown, A. Dragan, Aditi Raghunathan
{"title":"Contextual Reliability: When Different Features Matter in Different Contexts","authors":"Gaurav R. Ghosal, Amrith Rajagopal Setlur, Daniel S. Brown, A. Dragan, Aditi Raghunathan","doi":"10.48550/arXiv.2307.10026","DOIUrl":null,"url":null,"abstract":"Deep neural networks often fail catastrophically by relying on spurious correlations. Most prior work assumes a clear dichotomy into spurious and reliable features; however, this is often unrealistic. For example, most of the time we do not want an autonomous car to simply copy the speed of surrounding cars -- we don't want our car to run a red light if a neighboring car does so. However, we cannot simply enforce invariance to next-lane speed, since it could provide valuable information about an unobservable pedestrian at a crosswalk. Thus, universally ignoring features that are sometimes (but not always) reliable can lead to non-robust performance. We formalize a new setting called contextual reliability which accounts for the fact that the\"right\"features to use may vary depending on the context. We propose and analyze a two-stage framework called Explicit Non-spurious feature Prediction (ENP) which first identifies the relevant features to use for a given context, then trains a model to rely exclusively on these features. Our work theoretically and empirically demonstrates the advantages of ENP over existing methods and provides new benchmarks for contextual reliability.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"173 1","pages":"11300-11320"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.10026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep neural networks often fail catastrophically by relying on spurious correlations. Most prior work assumes a clear dichotomy into spurious and reliable features; however, this is often unrealistic. For example, most of the time we do not want an autonomous car to simply copy the speed of surrounding cars -- we don't want our car to run a red light if a neighboring car does so. However, we cannot simply enforce invariance to next-lane speed, since it could provide valuable information about an unobservable pedestrian at a crosswalk. Thus, universally ignoring features that are sometimes (but not always) reliable can lead to non-robust performance. We formalize a new setting called contextual reliability which accounts for the fact that the"right"features to use may vary depending on the context. We propose and analyze a two-stage framework called Explicit Non-spurious feature Prediction (ENP) which first identifies the relevant features to use for a given context, then trains a model to rely exclusively on these features. Our work theoretically and empirically demonstrates the advantages of ENP over existing methods and provides new benchmarks for contextual reliability.
上下文可靠性:当不同的特征在不同的上下文中起作用时
深度神经网络常常因为依赖于虚假的相关性而导致灾难性的失败。大多数先前的工作假设了虚假和可靠特征的明确二分法;然而,这通常是不现实的。例如,大多数时候,我们不希望一辆自动驾驶汽车简单地模仿周围汽车的速度——我们不希望我们的汽车在邻近汽车闯红灯的情况下也闯红灯。然而,我们不能简单地强制下一车道速度的不变性,因为它可以提供有关人行横道上不可观察的行人的有价值的信息。因此,普遍忽略有时(但不总是)可靠的特性可能导致性能不健壮。我们形式化了一种称为上下文可靠性的新设置,它说明了使用“正确”的功能可能因上下文而异的事实。我们提出并分析了一个称为显式非伪特征预测(ENP)的两阶段框架,该框架首先识别用于给定上下文的相关特征,然后训练模型完全依赖这些特征。我们的工作从理论上和经验上证明了ENP相对于现有方法的优势,并为上下文可靠性提供了新的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信