A. Raza, F. Malik, Rameez Khan, N. Mazhar, Hameed Ullah, Nigar Ahmed
{"title":"Sliding Mode Control-Based Autonomous Control of a Tri-rotor Unmanned Aerial Vehicle","authors":"A. Raza, F. Malik, Rameez Khan, N. Mazhar, Hameed Ullah, Nigar Ahmed","doi":"10.1142/s2737480721500138","DOIUrl":null,"url":null,"abstract":"A nonlinear control technique for autonomous control of a tri-rotor unmanned aerial vehicle is presented in this paper. First, a comprehensive mathematical model is developed using the Newton–Euler approach for a tri-rotor, which is found to be highly nonlinear and coupled. Then, the equivalent input affine model is extracted by applying a suitable transformation. Finally, the sliding mode control for trajectory tracking is chosen which is immune to matched external disturbances, parametric uncertainties, and modeling errors. The proposed controller performance has been verified for appropriate inputs under wind disturbances using MATLAB, and the simulation results are presented.","PeriodicalId":6623,"journal":{"name":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2737480721500138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A nonlinear control technique for autonomous control of a tri-rotor unmanned aerial vehicle is presented in this paper. First, a comprehensive mathematical model is developed using the Newton–Euler approach for a tri-rotor, which is found to be highly nonlinear and coupled. Then, the equivalent input affine model is extracted by applying a suitable transformation. Finally, the sliding mode control for trajectory tracking is chosen which is immune to matched external disturbances, parametric uncertainties, and modeling errors. The proposed controller performance has been verified for appropriate inputs under wind disturbances using MATLAB, and the simulation results are presented.