Effect of radiation absorption and chemical reaction on MHD‐free convective flow through a porous medium past an infinite vertical porous plate in the presence of constant heat flux
{"title":"Effect of radiation absorption and chemical reaction on MHD‐free convective flow through a porous medium past an infinite vertical porous plate in the presence of constant heat flux","authors":"N. Ahmed, Richa Deb Dowerah","doi":"10.1002/htj.22936","DOIUrl":null,"url":null,"abstract":"An incompressible, electrically conducting, and viscous fluid flowing steadily and freely across a uniformly porous media that is partially constrained by an infinitely long vertical porous plate is studied in the present article. Additionally, chemical reaction and radiation absorption effects are seen. Here, a magnetic field of uniform strength is applied transversely to the plate, a normal suction velocity is imposed on the fluid, and the heat flux is considered to be constant. The non‐dimensional momentum and energy equations are solved using the method of perturbation. The problem has been analytically resolved, and several parameters, including the Hartmann number, porosity parameter, thermal Grashof number, mass Grashof number, and transport properties like the Sherwood number, skin friction, and plate temperature, are graphically represented. The current study reveals a spike in the radiation absorption effect causes skin friction to drop, but on the other hand, a contrary effect is observed for plate temperature. One of the notable findings of this investigation is that the Sherwood number increases as chemical reaction parameter influence increases.","PeriodicalId":50408,"journal":{"name":"Heat Transfer Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/htj.22936","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
An incompressible, electrically conducting, and viscous fluid flowing steadily and freely across a uniformly porous media that is partially constrained by an infinitely long vertical porous plate is studied in the present article. Additionally, chemical reaction and radiation absorption effects are seen. Here, a magnetic field of uniform strength is applied transversely to the plate, a normal suction velocity is imposed on the fluid, and the heat flux is considered to be constant. The non‐dimensional momentum and energy equations are solved using the method of perturbation. The problem has been analytically resolved, and several parameters, including the Hartmann number, porosity parameter, thermal Grashof number, mass Grashof number, and transport properties like the Sherwood number, skin friction, and plate temperature, are graphically represented. The current study reveals a spike in the radiation absorption effect causes skin friction to drop, but on the other hand, a contrary effect is observed for plate temperature. One of the notable findings of this investigation is that the Sherwood number increases as chemical reaction parameter influence increases.
期刊介绍:
Heat Transfer Research (ISSN1064-2285) presents archived theoretical, applied, and experimental papers selected globally. Selected papers from technical conference proceedings and academic laboratory reports are also published. Papers are selected and reviewed by a group of expert associate editors, guided by a distinguished advisory board, and represent the best of current work in the field. Heat Transfer Research is published under an exclusive license to Begell House, Inc., in full compliance with the International Copyright Convention. Subjects covered in Heat Transfer Research encompass the entire field of heat transfer and relevant areas of fluid dynamics, including conduction, convection and radiation, phase change phenomena including boiling and solidification, heat exchanger design and testing, heat transfer in nuclear reactors, mass transfer, geothermal heat recovery, multi-scale heat transfer, heat and mass transfer in alternative energy systems, and thermophysical properties of materials.