Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games

A. Ambainis, M. Kokainis
{"title":"Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games","authors":"A. Ambainis, M. Kokainis","doi":"10.1145/3055399.3055444","DOIUrl":null,"url":null,"abstract":"We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex v, outputs the children of v. We construct a quantum algorithm which, given such access to a search tree of depth at most n, estimates the size of the tree T within a factor of 1± δ in Õ(√nT) steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines T nodes of a search tree into an Õ(√Tn3/2) time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b)We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games) which evaluates formulas of size T and depth To(1) in time O(T1/2+o(1)). Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex v, outputs the children of v. We construct a quantum algorithm which, given such access to a search tree of depth at most n, estimates the size of the tree T within a factor of 1± δ in Õ(√nT) steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which examines T nodes of a search tree into an Õ(√Tn3/2) time quantum algorithm, improving over an earlier quantum backtracking algorithm of Montanaro (arXiv:1509.02374). b)We give a quantum algorithm for evaluating AND-OR formulas in a model where the formula can be discovered by local exploration (modeling position trees in 2-player games) which evaluates formulas of size T and depth To(1) in time O(T1/2+o(1)). Thus, the quantum speedup is essentially the same as in the case when the formula is known in advance.
用于树大小估计的量子算法,应用于回溯和2人游戏
我们研究了未知结构的搜索树上的量子算法,在一个可以通过局部探索发现树的模型中。也就是说,我们给定树的根,并访问一个黑盒,该黑盒给定顶点v,输出v的子节点。我们构造了一个量子算法,给定对深度最多为n的搜索树的访问,该算法在Õ(√nT)步长中以1±δ为因子估计树T的大小。更一般地说,在类似的模型中,同样的算法可以用来估计有向无环图(dag)的大小。然后,我们展示了该结果的两个应用:a)我们展示了如何将检查搜索树的T个节点的经典回溯搜索算法转换为Õ(√Tn3/2)时间量子算法,改进了Montanaro (arXiv:1509.02374)的早期量子回溯算法。b)我们给出了一种量子算法,用于评估模型中的and - or公式,其中公式可以通过局部探索(在2人博弈中建模位置树)发现,该模型在时间O(T1/2+ O(1))中评估大小为T、深度为To(1)的公式。因此,量子加速本质上与公式事先已知的情况相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信