Fast analysis of potassium, sodium, calcium, and magnesium cations in total parenteral nutrition formulations with the Wyn-CE Capillary Electrophoresis System coupled with a contactless conductivity detection
{"title":"Fast analysis of potassium, sodium, calcium, and magnesium cations in total parenteral nutrition formulations with the Wyn-CE Capillary Electrophoresis System coupled with a contactless conductivity detection","authors":"Cédric Sarazin, P. Riollet","doi":"10.17145/JAB.16.010","DOIUrl":null,"url":null,"abstract":"The compounding of Total Parenteral Nutrition (TPN) formulations in hospital pharmacies needs a high quality analytical control due to the risk incurred by the patient [1]. Errors in the electrolyte concentrations can lead to important damages on health patient, especially for babies, in neonatology services. For babies and children, some hospitals used commercial TPN but others preferred Individual Parenteral Nutrition directly prepared in pharmaceutical laboratory manually or with an automated compounding device. An important control of the formulation qualities is today mandatory before the administration to the patient in order to eliminate conception errors which can have serious clinical consequences. Capillary electrophoresis coupled with indirect UV detection was already developed for the analysis of cations in TPN [2] and appeared as a valuable alternative to flame spectrometry or IC. Indirect UV detection for routine analysis can be difficult to implement due to the obligation to create a detection window on the capillary and the use of complex buffers containing most often carcinogen and mutagen chromophore agents. The apparition of contactless conductivity detectors offered to users an easy handling of capillary and a simpler buffer conception. Nussbaumer et al. already presented a CE method dedicated to the problematic of cation in TPN analyses [3]. This method used a hydro-organic Background Electrolyte (BGE) composed by 100 mM Tris/acetate buffer at pH 4.5 and acetonitrile (80/20, v/v). The separation was obtained in 4 min with limits of detection was estimated at 0.02 mM for all cations. This application note focused on the validation of a faster and more sensitive CE method with C4D detection for the JOURNAL OF APPLIED BIOANALYSIS, April 2016, p. 76-80. http://dx.doi.org/10.17145/jab.16.010 (ISSN 2405-710X) Vol. 2, No. 2","PeriodicalId":15014,"journal":{"name":"Journal of Applied Bioanalysis","volume":"156 1","pages":"76-80"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Bioanalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17145/JAB.16.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The compounding of Total Parenteral Nutrition (TPN) formulations in hospital pharmacies needs a high quality analytical control due to the risk incurred by the patient [1]. Errors in the electrolyte concentrations can lead to important damages on health patient, especially for babies, in neonatology services. For babies and children, some hospitals used commercial TPN but others preferred Individual Parenteral Nutrition directly prepared in pharmaceutical laboratory manually or with an automated compounding device. An important control of the formulation qualities is today mandatory before the administration to the patient in order to eliminate conception errors which can have serious clinical consequences. Capillary electrophoresis coupled with indirect UV detection was already developed for the analysis of cations in TPN [2] and appeared as a valuable alternative to flame spectrometry or IC. Indirect UV detection for routine analysis can be difficult to implement due to the obligation to create a detection window on the capillary and the use of complex buffers containing most often carcinogen and mutagen chromophore agents. The apparition of contactless conductivity detectors offered to users an easy handling of capillary and a simpler buffer conception. Nussbaumer et al. already presented a CE method dedicated to the problematic of cation in TPN analyses [3]. This method used a hydro-organic Background Electrolyte (BGE) composed by 100 mM Tris/acetate buffer at pH 4.5 and acetonitrile (80/20, v/v). The separation was obtained in 4 min with limits of detection was estimated at 0.02 mM for all cations. This application note focused on the validation of a faster and more sensitive CE method with C4D detection for the JOURNAL OF APPLIED BIOANALYSIS, April 2016, p. 76-80. http://dx.doi.org/10.17145/jab.16.010 (ISSN 2405-710X) Vol. 2, No. 2