{"title":"Conformal dimension via p-resistance: Sierpinski carpet","authors":"J. Kwapisz","doi":"10.5186/aasfm.2020.4515","DOIUrl":null,"url":null,"abstract":"We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sierpiński carpet. Specifically, we construct large resistor network approximating the carpet, establish weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the associated critical exponent, and provide numerical approximations and rigorous two-sided bounds. In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Hausdorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/aasfm.2020.4515","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8
Abstract
We put forth the notion of p-resistance as a proxy for the combinatorial p-modulus and demonstrate its effectiveness by studying the (Ahlfors regular) conformal dimension of the Sierpiński carpet. Specifically, we construct large resistor network approximating the carpet, establish weak-sup and sub-multiplicativity of their p-resistances, identify the conformal dimension as the associated critical exponent, and provide numerical approximations and rigorous two-sided bounds. In particular, we prove that the conformal dimension of the carpet exceeds 1 + ln 2/ ln 3, the Hausdorff dimension of the Cantor comb contained therein. A conjectural construction (and a numerical picture) of the quasi-symmetric uniformization of the carpet emerges as a byproduct.
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.