RELIABLE INTEGRATION OF CONTINUOUS CONSTRAINTS INTO EXTREME LEARNING MACHINES

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Klaus Neumann, Matthias Rolf, Jochen J. Steil
{"title":"RELIABLE INTEGRATION OF CONTINUOUS CONSTRAINTS INTO EXTREME LEARNING MACHINES","authors":"Klaus Neumann, Matthias Rolf, Jochen J. Steil","doi":"10.1142/S021848851340014X","DOIUrl":null,"url":null,"abstract":"The application of machine learning methods in the engineering of intelligent technical systems often requires the integration of continuous constraints like positivity, monotonicity, or bounded curvature in the learned function to guarantee a reliable performance. We show that the extreme learning machine is particularly well suited for this task. Constraints involving arbitrary derivatives of the learned function are effectively implemented through quadratic optimization because the learned function is linear in its parameters, and derivatives can be derived analytically. We further provide a constructive approach to verify that discretely sampled constraints are generalized to continuous regions and show how local violations of the constraint can be rectified by iterative re-learning. We demonstrate the approach on a practical and challenging control problem from robotics, illustrating also how the proposed method enables learning from few data samples if additional prior knowledge about the problem is...","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"19 1","pages":"35-50"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S021848851340014X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 29

Abstract

The application of machine learning methods in the engineering of intelligent technical systems often requires the integration of continuous constraints like positivity, monotonicity, or bounded curvature in the learned function to guarantee a reliable performance. We show that the extreme learning machine is particularly well suited for this task. Constraints involving arbitrary derivatives of the learned function are effectively implemented through quadratic optimization because the learned function is linear in its parameters, and derivatives can be derived analytically. We further provide a constructive approach to verify that discretely sampled constraints are generalized to continuous regions and show how local violations of the constraint can be rectified by iterative re-learning. We demonstrate the approach on a practical and challenging control problem from robotics, illustrating also how the proposed method enables learning from few data samples if additional prior knowledge about the problem is...
将连续约束可靠地集成到极限学习机中
机器学习方法在智能技术系统工程中的应用通常需要在学习函数中集成连续约束,如正性、单调性或有界曲率,以保证可靠的性能。我们发现极限学习机特别适合这个任务。由于所学习的函数的参数是线性的,并且可以解析地推导导数,因此通过二次优化有效地实现了涉及学到的函数的任意导数的约束。我们进一步提供了一种建设性的方法来验证离散采样约束被推广到连续区域,并展示了如何通过迭代再学习来纠正局部约束的违反。我们在机器人的一个实际且具有挑战性的控制问题上展示了该方法,并说明了如果关于问题的额外先验知识是……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信