{"title":"Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst","authors":"Antonius Indarto","doi":"10.1016/j.jcice.2007.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>The hydrogen fuel cell is a promising option as a future energy resource; however, the nature of the gas is such that the conversion process of other fuels to hydrogen on board is necessary. Among the raw fuel resources, methane could be the best candidate as it is plentiful. In this experiment, the possibility of producing hydrogen with less carbon formation from methane by a dielectric barrier discharge (DBD) was investigated. Without the addition of a catalyst, the formation of hydrogen reached between 30% and 35% at methane residence time of 0.22<!--> <!-->min and supplied powers in the range of 60–130<!--> <!-->W. The hydrogen selectivity increased at higher supplied power, but the process efficiency, defined as a ratio of the produced hydrogen to the supplied power, decreased slightly. In order to boost the hydrogen production with less carbon formation, a mixed oxide catalyst of zinc and chromium was added to the reactor. It was shown that the production of hydrogen was ca. 40% higher than the non-catalytic plasma process.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 1","pages":"Pages 23-28"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2007.10.001","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368165307001037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
The hydrogen fuel cell is a promising option as a future energy resource; however, the nature of the gas is such that the conversion process of other fuels to hydrogen on board is necessary. Among the raw fuel resources, methane could be the best candidate as it is plentiful. In this experiment, the possibility of producing hydrogen with less carbon formation from methane by a dielectric barrier discharge (DBD) was investigated. Without the addition of a catalyst, the formation of hydrogen reached between 30% and 35% at methane residence time of 0.22 min and supplied powers in the range of 60–130 W. The hydrogen selectivity increased at higher supplied power, but the process efficiency, defined as a ratio of the produced hydrogen to the supplied power, decreased slightly. In order to boost the hydrogen production with less carbon formation, a mixed oxide catalyst of zinc and chromium was added to the reactor. It was shown that the production of hydrogen was ca. 40% higher than the non-catalytic plasma process.