An immersion of a square in 4-edge-connected graphs

K. Kawarabayashi, Yusuke Kobayashi
{"title":"An immersion of a square in 4-edge-connected graphs","authors":"K. Kawarabayashi, Yusuke Kobayashi","doi":"10.2201/NIIPI.2012.9.7","DOIUrl":null,"url":null,"abstract":"For an undirected graph G and its four distinct vertices v1, v2, v3, v4, an immersion of (v1, v2, v3, v4) is a subgraph of G that consists of four edge-disjoint paths P1, P2, P3, P4 such that Pi connects vi and vi+1 for i = 1, 2, 3, 4, where v5 = v1. We show that every 4-edgeconnected graph G = (V, E) has an immersion of (v1, v2, v3, v4) for any v1, v2, v3, v4 ∈ V, and it can be found in linear time.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"11 1","pages":"35"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2012.9.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an undirected graph G and its four distinct vertices v1, v2, v3, v4, an immersion of (v1, v2, v3, v4) is a subgraph of G that consists of four edge-disjoint paths P1, P2, P3, P4 such that Pi connects vi and vi+1 for i = 1, 2, 3, 4, where v5 = v1. We show that every 4-edgeconnected graph G = (V, E) has an immersion of (v1, v2, v3, v4) for any v1, v2, v3, v4 ∈ V, and it can be found in linear time.
将正方形浸入四边连通图中
对于无向图G及其四个不同的顶点v1, v2, v3, v4,浸入式(v1, v2, v3, v4)是G的子图,它由四条边不相交的路径P1, P2, P3, P4组成,使得当i = 1,2,3,4时,Pi连接vi和vi+1,其中v5 = v1。我们证明了对于任意v1, v2, v3, v4∈V,每个4边连通图G = (V, E)具有(v1, v2, v3, v4)的浸入,并且可以在线性时间内找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信