Stochastic comparisons of largest claim amounts from heterogeneous portfolios

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pradip Kundu, Amarjit Kundu, Biplab Hawlader
{"title":"Stochastic comparisons of largest claim amounts from heterogeneous portfolios","authors":"Pradip Kundu, Amarjit Kundu, Biplab Hawlader","doi":"10.1111/stan.12296","DOIUrl":null,"url":null,"abstract":"This paper investigates stochastic comparisons of largest claim amounts of two sets of independent or interdependent portfolios in the sense of some stochastic orders. Let random variable Xi$$ {X}_i $$ ( i=1,…,n$$ i=1,\\dots, n $$ ) with distribution function F(x;αi)$$ F\\left(x;{\\alpha}_i\\right) $$ , represents the claim amount for ith risk of a portfolio. Here two largest claim amounts are compared considering that the claim variables follow a general semiparametric family of distributions having the property that the survival function F‾(x;α)$$ \\overline{F}\\left(x;\\alpha \\right) $$ is increasing in α$$ \\alpha $$ or is increasing and convex/concave in α$$ \\alpha $$ . The results obtained in this paper apply to a large class of well‐known distributions including the family of exponentiated/generalized distributions (e.g., exponentiated exponential, Weibull, gamma and Pareto family), Rayleigh distribution and Marshall–Olkin family of distributions. As a direct consequence of some main theorems, we also obtained the results for scale family of distributions. Several numerical examples are provided to illustrate the results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12296","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates stochastic comparisons of largest claim amounts of two sets of independent or interdependent portfolios in the sense of some stochastic orders. Let random variable Xi$$ {X}_i $$ ( i=1,…,n$$ i=1,\dots, n $$ ) with distribution function F(x;αi)$$ F\left(x;{\alpha}_i\right) $$ , represents the claim amount for ith risk of a portfolio. Here two largest claim amounts are compared considering that the claim variables follow a general semiparametric family of distributions having the property that the survival function F‾(x;α)$$ \overline{F}\left(x;\alpha \right) $$ is increasing in α$$ \alpha $$ or is increasing and convex/concave in α$$ \alpha $$ . The results obtained in this paper apply to a large class of well‐known distributions including the family of exponentiated/generalized distributions (e.g., exponentiated exponential, Weibull, gamma and Pareto family), Rayleigh distribution and Marshall–Olkin family of distributions. As a direct consequence of some main theorems, we also obtained the results for scale family of distributions. Several numerical examples are provided to illustrate the results.
异质投资组合中最大索赔金额的随机比较
本文研究了两组独立或相互依赖的投资组合在一定随机顺序下最大索赔额的随机比较问题。$$ {X}_i $$ (i=1,…,n$$ i=1,\dots, n $$ ),分布函数F(x;αi)$$ F\left(x;{\alpha}_i\right) $$ ,表示投资组合风险的索赔金额。这里比较两个最大的索赔金额,考虑索赔变量遵循一般的半参数分布族,其性质是生存函数F (x;α)$$ \overline{F}\left(x;\alpha \right) $$ 在α中增加$$ \alpha $$ 或在α中呈递增和凸/凹$$ \alpha $$ . 本文所得到的结果适用于一大类众所周知的分布,包括指数/广义分布族(如指数分布族、Weibull分布族、gamma分布族和Pareto分布族)、Rayleigh分布族和Marshall-Olkin分布族。作为一些主要定理的直接推论,我们也得到了分布的尺度族的结果。给出了几个数值算例来说明结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信