Information complexity: a tutorial

T. S. Jayram
{"title":"Information complexity: a tutorial","authors":"T. S. Jayram","doi":"10.1145/1807085.1807108","DOIUrl":null,"url":null,"abstract":"The recent years have witnessed the overwhelming success of algorithms that operate on massive data. Several computing paradigms have been proposed for massive data set algorithms such as data streams, sketching, sampling etc. and understanding their limitations is a fundamental theoretical challenge. In this survey, we describe the information complexity paradigm that has proved successful in obtaining tight lower bounds for several well-known problems. Information complexity quantifies the amount of information about the inputs that must be necessarily propagated by any algorithm in solving a problem. We describe the key ideas of this paradigm, and highlight the beautiful interplay of techniques arising from diverse areas such as information theory, statistics and geometry.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"29 1","pages":"159-168"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1807085.1807108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The recent years have witnessed the overwhelming success of algorithms that operate on massive data. Several computing paradigms have been proposed for massive data set algorithms such as data streams, sketching, sampling etc. and understanding their limitations is a fundamental theoretical challenge. In this survey, we describe the information complexity paradigm that has proved successful in obtaining tight lower bounds for several well-known problems. Information complexity quantifies the amount of information about the inputs that must be necessarily propagated by any algorithm in solving a problem. We describe the key ideas of this paradigm, and highlight the beautiful interplay of techniques arising from diverse areas such as information theory, statistics and geometry.
信息复杂性:教程
近年来,处理海量数据的算法取得了压倒性的成功。对于大量数据集算法,如数据流、草图、采样等,已经提出了几种计算范式,了解它们的局限性是一个基本的理论挑战。在这篇综述中,我们描述了信息复杂性范式,该范式已被证明能够成功地为几个众所周知的问题获得紧下界。信息复杂性量化了任何算法在解决问题时必须传播的关于输入的信息量。我们描述了这种范式的关键思想,并强调了来自不同领域(如信息论、统计学和几何)的技术之间的美妙相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信