{"title":"Reviving the interference: Framework and proof-of-principle for the anomalous gluon self-interaction in the SMEFT","authors":"C. Degrande, Matteo Maltoni","doi":"10.1103/PhysRevD.103.095009","DOIUrl":null,"url":null,"abstract":"Interferences are not positive-definite and therefore they can change sign over the phase space. If the contributions of the regions where the interference is positive and negative nearly cancel each other, interference effects are hard to measure. In this paper, we propose a method to quantify the ability of an observable to separate an interference positive and negative contributions and therefore to revive the interference effects in measurements. We apply this method to the anomalous gluon operator in the SMEFT for which the interference suppression is well-known. We show that we can get contraints on its coefficient, using the interference only, similar to those obtained by including the square of the new physics amplitude.","PeriodicalId":8457,"journal":{"name":"arXiv: High Energy Physics - Phenomenology","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Phenomenology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevD.103.095009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Interferences are not positive-definite and therefore they can change sign over the phase space. If the contributions of the regions where the interference is positive and negative nearly cancel each other, interference effects are hard to measure. In this paper, we propose a method to quantify the ability of an observable to separate an interference positive and negative contributions and therefore to revive the interference effects in measurements. We apply this method to the anomalous gluon operator in the SMEFT for which the interference suppression is well-known. We show that we can get contraints on its coefficient, using the interference only, similar to those obtained by including the square of the new physics amplitude.