Effect of Salicylic Acid and Calcium Chloride on Lipid peroxidation and Scavenging Capacity of Radical of red bean (Phaseolus calcaratus L.) under Salt Stress

K. Mahdavian
{"title":"Effect of Salicylic Acid and Calcium Chloride on Lipid peroxidation and Scavenging Capacity of Radical of red bean (Phaseolus calcaratus L.) under Salt Stress","authors":"K. Mahdavian","doi":"10.22059/IJHST.2021.312776.407","DOIUrl":null,"url":null,"abstract":"Soil salinity is one of the critical challenges for development of culture area of agricultural crops. In the present study a pot experiment was conducted in factorial based on completely randomized design aimed to investigate the impact of exogenous application of salicylic acid (SA 0, 0.75 and 1.5 mM) and calcium chloride (CaCl2 0, 50 and 100 mM), solely or in combination, on plant growth, photosynthetic pigments (total chlorophyll (Chl), carotenoids, anthocyanin), and some metabolic parameters (reducing sugars, proline, lipid peroxidation and scavenging ability on DPPH (2,2-diphenyl-1-picrylhydrazyl) radical) of red bean exposed to salt stress (0, 25 and 75 mM NaCl). Results showed that exogenous application of SA or calcium (Ca) alone improved plant performance under NaCl stress. Growth slowed down under salinity. Malondialdehyde (MDA), DPPH radical, anthocyanin, and proline content were increased under salinity stress. However, application of SA and Ca enhanced the growth parameters, improved the Chl, carotenoids, and reducing sugars content, and significantly reduced MDA and DPPH radical in plants. Therefore, induced tolerance to salinity as the result of SA and Ca application may be related to the regulation of antioxidative responses. Furthermore, the beneficial effect of SA and Ca were achieved by applications of 0.75 mM SA and 50 mM CaCl2, which are recommended to improve red bean performance under saline conditions. In conclusion, exogenous application of SA and Ca improved salinity stress tolerance through the regulation of antioxidant system.","PeriodicalId":15968,"journal":{"name":"Journal of Horticultural Science","volume":"37 1","pages":"55-72"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Horticultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/IJHST.2021.312776.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Soil salinity is one of the critical challenges for development of culture area of agricultural crops. In the present study a pot experiment was conducted in factorial based on completely randomized design aimed to investigate the impact of exogenous application of salicylic acid (SA 0, 0.75 and 1.5 mM) and calcium chloride (CaCl2 0, 50 and 100 mM), solely or in combination, on plant growth, photosynthetic pigments (total chlorophyll (Chl), carotenoids, anthocyanin), and some metabolic parameters (reducing sugars, proline, lipid peroxidation and scavenging ability on DPPH (2,2-diphenyl-1-picrylhydrazyl) radical) of red bean exposed to salt stress (0, 25 and 75 mM NaCl). Results showed that exogenous application of SA or calcium (Ca) alone improved plant performance under NaCl stress. Growth slowed down under salinity. Malondialdehyde (MDA), DPPH radical, anthocyanin, and proline content were increased under salinity stress. However, application of SA and Ca enhanced the growth parameters, improved the Chl, carotenoids, and reducing sugars content, and significantly reduced MDA and DPPH radical in plants. Therefore, induced tolerance to salinity as the result of SA and Ca application may be related to the regulation of antioxidative responses. Furthermore, the beneficial effect of SA and Ca were achieved by applications of 0.75 mM SA and 50 mM CaCl2, which are recommended to improve red bean performance under saline conditions. In conclusion, exogenous application of SA and Ca improved salinity stress tolerance through the regulation of antioxidant system.
盐胁迫下水杨酸和氯化钙对红豆脂质过氧化和自由基清除能力的影响
土壤盐碱化是影响农作物种植区发展的关键问题之一。本研究采用完全随机设计的盆栽因子试验,旨在研究外源施用水杨酸(SA 0、0.75和1.5 mM)和氯化钙(CaCl2 0、50和100 mM)单独或联合施用对植物生长、光合色素(总叶绿素(Chl)、类胡萝卜素、花青素)和一些代谢参数(还原糖、脯氨酸、脯氨酸、钙)的影响。盐胁迫(0、25和75 mM NaCl)下红豆脂质过氧化及对DPPH(2,2-二苯基-1-苦酰肼)自由基的清除能力结果表明,在NaCl胁迫下,外源单独施用SA或Ca均能提高植株的生产性能。盐度降低了生长速度。盐胁迫下丙二醛(MDA)、DPPH自由基、花青素和脯氨酸含量升高。而SA和Ca处理能提高植株的生长参数,提高Chl、类胡萝卜素和还原糖含量,显著降低MDA和DPPH自由基含量。因此,SA和Ca诱导的耐盐性可能与抗氧化反应的调节有关。此外,0.75 mM SA和50 mM CaCl2对红豆的生理性能有显著的改善作用。综上所述,外源施用SA和Ca通过调控抗氧化系统提高了盐胁迫耐受性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信