Arachnophobia Exposure Therapy using Experience-driven Procedural Content Generation via Reinforcement Learning (EDPCGRL)

Athar Mahmoudi-Nejad, Matthew J. Guzdial, P. Boulanger
{"title":"Arachnophobia Exposure Therapy using Experience-driven Procedural Content Generation via Reinforcement Learning (EDPCGRL)","authors":"Athar Mahmoudi-Nejad, Matthew J. Guzdial, P. Boulanger","doi":"10.1609/aiide.v17i1.18904","DOIUrl":null,"url":null,"abstract":"Personalized therapy, in which a therapeutic practice is adapted to an individual patient, leads to better health outcomes. Typically, this is accomplished by relying on a therapist's training and intuition along with feedback from a patient. While there exist approaches to automatically adapt therapeutic content to a patient, they rely on hand-authored, pre-defined rules, which may not generalize to all individuals. In this paper, we propose an approach to automatically adapt therapeutic content to patients based on physiological measures. We implement our approach in the context of arachnophobia exposure therapy, and rely on experience-driven procedural content generation via reinforcement learning (EDPCGRL) to generate virtual spiders to match an individual patient. In this initial implementation, and due to the ongoing pandemic, we make use of virtual or artificial humans implemented based on prior arachnophobia psychology research. Our EDPCGRL method is able to more quickly adapt to these virtual humans with high accuracy in comparison to existing, search-based EDPCG approaches.","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"1 1","pages":"164-171"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v17i1.18904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Personalized therapy, in which a therapeutic practice is adapted to an individual patient, leads to better health outcomes. Typically, this is accomplished by relying on a therapist's training and intuition along with feedback from a patient. While there exist approaches to automatically adapt therapeutic content to a patient, they rely on hand-authored, pre-defined rules, which may not generalize to all individuals. In this paper, we propose an approach to automatically adapt therapeutic content to patients based on physiological measures. We implement our approach in the context of arachnophobia exposure therapy, and rely on experience-driven procedural content generation via reinforcement learning (EDPCGRL) to generate virtual spiders to match an individual patient. In this initial implementation, and due to the ongoing pandemic, we make use of virtual or artificial humans implemented based on prior arachnophobia psychology research. Our EDPCGRL method is able to more quickly adapt to these virtual humans with high accuracy in comparison to existing, search-based EDPCG approaches.
基于强化学习(EDPCGRL)的经验驱动程序内容生成的蜘蛛恐惧症暴露治疗
个性化治疗,即针对个别患者调整治疗方法,可带来更好的健康结果。通常,这是依靠治疗师的训练和直觉以及患者的反馈来完成的。虽然存在自动调整治疗内容以适应患者的方法,但它们依赖于手动编写的预定义规则,这些规则可能不适用于所有个体。在本文中,我们提出了一种基于生理测量自动适应治疗内容的方法。我们在蜘蛛恐惧症暴露治疗的背景下实施了我们的方法,并依靠经验驱动的程序内容生成,通过强化学习(EDPCGRL)来生成虚拟蜘蛛,以匹配个体患者。在最初的实施中,由于正在进行的流行病,我们使用基于先前蜘蛛恐惧症心理学研究的虚拟或人造人。与现有的基于搜索的EDPCG方法相比,我们的EDPCGRL方法能够更快地适应这些虚拟人,并且具有较高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信