Global well-posedness for the 3D magneto-micropolar equations with fractional dissipation

Q4 Mathematics
Baoquan Yuan, Panpan Zhang
{"title":"Global well-posedness for the 3D magneto-micropolar equations with fractional dissipation","authors":"Baoquan Yuan, Panpan Zhang","doi":"10.53733/161","DOIUrl":null,"url":null,"abstract":"This paper focus on the Cauchy problem of the 3D incompressible magneto-micropolar equations with fractional dissipation in the Sobolev space. Liu, Sun and Xin obtained the global solutions to the 3D magneto-micropolar equations with $\\alpha=\\beta=\\gamma=\\frac{5}{4}$. Deng and Shang established the global well-posedness of the 3D magneto-micropolar equations in the case of $\\alpha\\geq\\frac{5}{4}$, $\\alpha+\\beta\\geq\\frac{5}{2}$ and $\\gamma\\geq2-\\alpha\\geq\\frac{3}{4}$. In this paper, we establish the global well-posedness of the 3D magneto-micropolar equations with $\\alpha=\\beta=\\frac{5}{4}$ and $\\gamma=\\frac{1}{2}$, which improves the results of Liu-Sun-Xin and Deng-Shang by reducing the value of $\\gamma$ to $\\frac{1}{2}$.","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This paper focus on the Cauchy problem of the 3D incompressible magneto-micropolar equations with fractional dissipation in the Sobolev space. Liu, Sun and Xin obtained the global solutions to the 3D magneto-micropolar equations with $\alpha=\beta=\gamma=\frac{5}{4}$. Deng and Shang established the global well-posedness of the 3D magneto-micropolar equations in the case of $\alpha\geq\frac{5}{4}$, $\alpha+\beta\geq\frac{5}{2}$ and $\gamma\geq2-\alpha\geq\frac{3}{4}$. In this paper, we establish the global well-posedness of the 3D magneto-micropolar equations with $\alpha=\beta=\frac{5}{4}$ and $\gamma=\frac{1}{2}$, which improves the results of Liu-Sun-Xin and Deng-Shang by reducing the value of $\gamma$ to $\frac{1}{2}$.
具有分数阶耗散的三维磁微极方程的全局适定性
研究了Sobolev空间中具有分数耗散的三维不可压缩磁微极方程的Cauchy问题。Liu, Sun和Xin通过$\alpha=\beta=\gamma=\frac{5}{4}$获得了三维磁微极方程的全局解。Deng和Shang建立了$\alpha\geq\frac{5}{4}$、$\alpha+\beta\geq\frac{5}{2}$和$\gamma\geq2-\alpha\geq\frac{3}{4}$情况下三维磁微极方程的全局适定性。本文利用$\alpha=\beta=\frac{5}{4}$和$\gamma=\frac{1}{2}$建立了三维磁微极方程的全局适定性,将$\gamma$的值降低为$\frac{1}{2}$,改进了刘孙新和邓尚的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
New Zealand Journal of Mathematics
New Zealand Journal of Mathematics Mathematics-Algebra and Number Theory
CiteScore
1.10
自引率
0.00%
发文量
11
审稿时长
50 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信