Robust interpolation of sequences with periodically stationary multiplicative seasonal increments

IF 1 Q1 MATHEMATICS
M. Luz, M. Moklyachuk
{"title":"Robust interpolation of sequences with periodically stationary multiplicative seasonal increments","authors":"M. Luz, M. Moklyachuk","doi":"10.15330/cmp.14.1.105-126","DOIUrl":null,"url":null,"abstract":"We consider stochastic sequences with periodically stationary generalized multiple increments of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally integrated patterns. We solve the interpolation problem for linear functionals constructed from unobserved values of a stochastic sequence of this type based on observations of the sequence with a periodically stationary noise sequence. For sequences with known matrices of spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal interpolation of the functionals. Formulas that determine the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal linear interpolation of the functionals are proposed in the case where spectral densities of the sequences are not exactly known while some sets of admissible spectral densities are given.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.14.1.105-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We consider stochastic sequences with periodically stationary generalized multiple increments of fractional order which combines cyclostationary, multi-seasonal, integrated and fractionally integrated patterns. We solve the interpolation problem for linear functionals constructed from unobserved values of a stochastic sequence of this type based on observations of the sequence with a periodically stationary noise sequence. For sequences with known matrices of spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal interpolation of the functionals. Formulas that determine the least favorable spectral densities and the minimax (robust) spectral characteristics of the optimal linear interpolation of the functionals are proposed in the case where spectral densities of the sequences are not exactly known while some sets of admissible spectral densities are given.
周期平稳乘性季节增量序列的鲁棒插值
我们考虑周期平稳广义分数阶多增量随机序列,它结合了周期平稳、多季节、积分和分数积分模式。我们解决了由这种类型的随机序列的未观测值构造的线性泛函的插值问题,该线性泛函基于周期性平稳噪声序列的观测值。对于已知谱密度矩阵的序列,我们得到了均方误差的计算公式和函数最优插值的谱特性。在序列的谱密度不完全已知的情况下,给出了若干组可容许谱密度,并给出了最优线性插值函数的最小有利谱密度和最小(鲁棒)谱特性的确定公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信