Alvaro Fernandez-Quilez, T. Eftestøl, S. R. Kjosavik, M. G. Olsen, K. Oppedal
{"title":"Multi-Planar T2W MRI for an Improved Prostate Cancer Lesion Classification","authors":"Alvaro Fernandez-Quilez, T. Eftestøl, S. R. Kjosavik, M. G. Olsen, K. Oppedal","doi":"10.1109/ISBI52829.2022.9761514","DOIUrl":null,"url":null,"abstract":"Prostate cancer (PCa) is the fifth leading cause of death world-wide. In spite of the urgency for a timely and accurate diagnostic, the current PCa diagnostic pathway suffers from over-diagnosis of indolent lesions and under-diagnosis of highly invasive ones. The advent of deep learning (DL) techniques has enabled automatic and accurate computer-assisted systems that rival human performance. However, current approaches for PCa diagnostic are heavily reliant on T2w axial MRI, which suffer from low out-of-plane resolution. Sagittal and coronal MRI scans are usually acquired by default along with the axial one but are generally ignored by DL classification algorithms. We propose a multi-stream approach to accommodate sagittal, coronal and axial planes and improve the performance of PCa lesion classification. We evaluate our method on a publicly available dataset and demonstrate that it provides better results when compared with a single-plane approach over a range of different DL architectures.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"44 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Prostate cancer (PCa) is the fifth leading cause of death world-wide. In spite of the urgency for a timely and accurate diagnostic, the current PCa diagnostic pathway suffers from over-diagnosis of indolent lesions and under-diagnosis of highly invasive ones. The advent of deep learning (DL) techniques has enabled automatic and accurate computer-assisted systems that rival human performance. However, current approaches for PCa diagnostic are heavily reliant on T2w axial MRI, which suffer from low out-of-plane resolution. Sagittal and coronal MRI scans are usually acquired by default along with the axial one but are generally ignored by DL classification algorithms. We propose a multi-stream approach to accommodate sagittal, coronal and axial planes and improve the performance of PCa lesion classification. We evaluate our method on a publicly available dataset and demonstrate that it provides better results when compared with a single-plane approach over a range of different DL architectures.