{"title":"Nucleon isovector charges from physical mass domain-wall QCD.","authors":"S. Ohta","doi":"10.22323/1.363.0051","DOIUrl":null,"url":null,"abstract":"Systematics in nucleon isovector vector, $g_V$, and axialvector, $g_A$, charges calculated on a 2+1-flavor dynamical domain-wall-fermions (DWF) ensemble at physical mass jointly generated by RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations with lattice cut off of 1.730(4) GeV, are analyzed. Both are calculated with about a percent or less statistical errors. A few standard-deviation systematics seen in vector charge is consistent with possible $O(a^2)$ discretization error through small excited-state contamination. Axialvector charge is found with three to nine standard-deviation systematic deficit, compared with experiments, depending on calculation methods.","PeriodicalId":8440,"journal":{"name":"arXiv: High Energy Physics - Lattice","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.363.0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Systematics in nucleon isovector vector, $g_V$, and axialvector, $g_A$, charges calculated on a 2+1-flavor dynamical domain-wall-fermions (DWF) ensemble at physical mass jointly generated by RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations with lattice cut off of 1.730(4) GeV, are analyzed. Both are calculated with about a percent or less statistical errors. A few standard-deviation systematics seen in vector charge is consistent with possible $O(a^2)$ discretization error through small excited-state contamination. Axialvector charge is found with three to nine standard-deviation systematic deficit, compared with experiments, depending on calculation methods.