ALGORITHM FOR VARIATIONAL INEQUALITY PROBLEM OVER THE SET OF SOLUTIONS THE EQUILIBRIUM PROBLEMS

IF 0.1
Yana Vedel, S. Denisov, V. Semenov
{"title":"ALGORITHM FOR VARIATIONAL INEQUALITY PROBLEM OVER THE SET OF SOLUTIONS THE EQUILIBRIUM PROBLEMS","authors":"Yana Vedel, S. Denisov, V. Semenov","doi":"10.17721/2706-9699.2020.1.02","DOIUrl":null,"url":null,"abstract":"In this paper, we consider bilevel problem: variational inequality problem over the set of solutions the equilibrium problems. To solve this problem, an iterative algorithm is proposed that combines the ideas of a two-stage proximal method and iterative regularization. For monotone bifunctions of Lipschitz type and strongly monotone Lipschitz continuous operators, the theorem on strong convergence of sequences generated by the algorithm is proved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"69 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2020.1.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we consider bilevel problem: variational inequality problem over the set of solutions the equilibrium problems. To solve this problem, an iterative algorithm is proposed that combines the ideas of a two-stage proximal method and iterative regularization. For monotone bifunctions of Lipschitz type and strongly monotone Lipschitz continuous operators, the theorem on strong convergence of sequences generated by the algorithm is proved.
变分不等式问题在平衡问题解集上的算法
本文研究了平衡问题解集上的两层问题:变分不等式问题。为了解决这一问题,提出了一种结合两阶段逼近法和迭代正则化思想的迭代算法。对于Lipschitz型单调双函数和强单调Lipschitz连续算子,证明了该算法生成序列的强收敛性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信