Suction and Injection Impacts on Casson Nanofluid With Gyrotactic Micro-organisms Over a Moving Wedge

IF 1.8 3区 工程技术 Q3 ENGINEERING, MECHANICAL
K. Jabeen, M. Mushtaq, R. Akram
{"title":"Suction and Injection Impacts on Casson Nanofluid With Gyrotactic Micro-organisms Over a Moving Wedge","authors":"K. Jabeen, M. Mushtaq, R. Akram","doi":"10.1115/1.4051484","DOIUrl":null,"url":null,"abstract":"\n This work deals with the effects of suction and injection on Casson nanofluid around a moving wedge under the influence of gyrotactic micro-organisms along with viscous and ohmic dissipation. The governing system of highly coupled nonlinear partial differential equations together with assisting boundary conditions is converted by applying suitable similarity transformations, into a set of nonlinear ordinary differential equations. The obtained flow model is solved numerically by bvp4c (matlab) procedure. The accuracy of the flow model under consideration is validated by employing another well-known mathematical technique Runge–Kutta-Fehlberg (RKF) having good agreement while comparing the numerical results obtained by bvp4c for both suction and injection cases. Impacts of various pertinent parameters active in the flow model such as thermophoresis and Brownian motion, moving wedge, magnetic field, viscous and ohmic dissipation are numerically calculated for both suction and injection flow situations and also presented graphically. It is observed that the increase in casson parameter enhances the velocity but declines the density of motile organism, concentration and temperature for suction as well as injection flow case. The impacts of mass transfer rate of gyrotactic micro-organisms, Nusselt and Sherwood numbers for various fluid parameters are numerically presented in tabular form, separately for both suction and injection. One of the important observations of this study is that the suction or injection plays a key role in controlling boundary layer flow and brings stability in the flow. Moreover, rate of heat and mass transfer get enhanced in the existence of gyrotactic micro-organisms. Further, it would be worth mentioning that physical behavior of this flow problem coincides very well with already published literature either graphically or in tabular representation.","PeriodicalId":54833,"journal":{"name":"Journal of Fluids Engineering-Transactions of the Asme","volume":"69 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4051484","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 14

Abstract

This work deals with the effects of suction and injection on Casson nanofluid around a moving wedge under the influence of gyrotactic micro-organisms along with viscous and ohmic dissipation. The governing system of highly coupled nonlinear partial differential equations together with assisting boundary conditions is converted by applying suitable similarity transformations, into a set of nonlinear ordinary differential equations. The obtained flow model is solved numerically by bvp4c (matlab) procedure. The accuracy of the flow model under consideration is validated by employing another well-known mathematical technique Runge–Kutta-Fehlberg (RKF) having good agreement while comparing the numerical results obtained by bvp4c for both suction and injection cases. Impacts of various pertinent parameters active in the flow model such as thermophoresis and Brownian motion, moving wedge, magnetic field, viscous and ohmic dissipation are numerically calculated for both suction and injection flow situations and also presented graphically. It is observed that the increase in casson parameter enhances the velocity but declines the density of motile organism, concentration and temperature for suction as well as injection flow case. The impacts of mass transfer rate of gyrotactic micro-organisms, Nusselt and Sherwood numbers for various fluid parameters are numerically presented in tabular form, separately for both suction and injection. One of the important observations of this study is that the suction or injection plays a key role in controlling boundary layer flow and brings stability in the flow. Moreover, rate of heat and mass transfer get enhanced in the existence of gyrotactic micro-organisms. Further, it would be worth mentioning that physical behavior of this flow problem coincides very well with already published literature either graphically or in tabular representation.
旋转微生物在移动楔上吸注对卡森纳米流体的影响
本文研究了在陀螺效应微生物的影响下,卡森纳米流体在移动楔体周围的吸力和注入对黏性和欧姆耗散的影响。通过适当的相似变换,将高耦合非线性偏微分方程的控制系统及其辅助边界条件转化为一组非线性常微分方程。利用bvp4c (matlab)程序对得到的流场模型进行了数值求解。采用另一种著名的数学技术Runge-Kutta-Fehlberg (RKF)验证了所考虑的流动模型的准确性,并将bvp4c在吸入和注射情况下的数值结果进行了比较,结果吻合良好。数值计算了吸、注两种流动情况下热泳动、布朗运动、动楔、磁场、粘性和欧姆耗散等流动模型中各相关参数的影响,并给出了图形。观察到卡森参数的增大使吸流和注射流情况下的运动生物密度、浓度和温度增大,而速度增大。在吸力和注射两种流体参数下,分别以数值形式给出了陀螺式微生物传质速率、努塞尔数和舍伍德数对不同流体参数的影响。本研究的一个重要观察结果是,吸力或喷射在控制边界层流动中起着关键作用,并带来了流动的稳定性。此外,回转体微生物的存在提高了传热传质速率。此外,值得一提的是,该流问题的物理行为与已经发表的文献无论是图形还是表格表示都非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
10.00%
发文量
165
审稿时长
5.0 months
期刊介绍: Multiphase flows; Pumps; Aerodynamics; Boundary layers; Bubbly flows; Cavitation; Compressible flows; Convective heat/mass transfer as it is affected by fluid flow; Duct and pipe flows; Free shear layers; Flows in biological systems; Fluid-structure interaction; Fluid transients and wave motion; Jets; Naval hydrodynamics; Sprays; Stability and transition; Turbulence wakes microfluidics and other fundamental/applied fluid mechanical phenomena and processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信