Zheng Liu, Jing Shi, Dongdong Ji, Bo Sun, Xue Zhang
{"title":"Commercial preparation of hybrid carbon filler/HDPE composite electrodes for lead methanesulfonate flow batteries","authors":"Zheng Liu, Jing Shi, Dongdong Ji, Bo Sun, Xue Zhang","doi":"10.1080/14658011.2021.2012359","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-density polyethylene (HDPE) conductive polymer composites are prepared using carbon fillers, such as natural flake graphite (FG), carbon black (CB), and carbon fibre (CF). Here, micro-sized FG as the main conductive filler, nano-sized CB as assistant conductive filler, and short CF as flexibility-enhanced materials are internally mixed with HDPE in a certain weight ratio. Commercial conductive polymer composite is prepared by hot pressing technology. Two kinds of conductive composites are selected by optimising the ratio of carbon fillers and HDPE. CF4%(CB + FG)1:5HDPE27% composite has the higher volume conductivity of 20.76 S cm−1 with a bending strength of 39.5 MPa. CF4%(CB + FG)1:4HDPE30% composite has the larger bending strength of 53.6 MPa with a volume conductivity of 18.82 S cm−1. The electrochemical corrosion resistances of those two composite electrodes are investigated over 900 charging/discharging cycles in the lead methanesulfonate flow cell. CF4%(CB + FG)1:4HDPE30% composite exhibits better durability than CF4%(CB + FG)1:5HDPE27% composite.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"36 1","pages":"520 - 529"},"PeriodicalIF":2.1000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2021.2012359","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT High-density polyethylene (HDPE) conductive polymer composites are prepared using carbon fillers, such as natural flake graphite (FG), carbon black (CB), and carbon fibre (CF). Here, micro-sized FG as the main conductive filler, nano-sized CB as assistant conductive filler, and short CF as flexibility-enhanced materials are internally mixed with HDPE in a certain weight ratio. Commercial conductive polymer composite is prepared by hot pressing technology. Two kinds of conductive composites are selected by optimising the ratio of carbon fillers and HDPE. CF4%(CB + FG)1:5HDPE27% composite has the higher volume conductivity of 20.76 S cm−1 with a bending strength of 39.5 MPa. CF4%(CB + FG)1:4HDPE30% composite has the larger bending strength of 53.6 MPa with a volume conductivity of 18.82 S cm−1. The electrochemical corrosion resistances of those two composite electrodes are investigated over 900 charging/discharging cycles in the lead methanesulfonate flow cell. CF4%(CB + FG)1:4HDPE30% composite exhibits better durability than CF4%(CB + FG)1:5HDPE27% composite.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.