Identifying Variables Interaction for Black-box Continuous Optimization with Mutual Information of Multiple Local Optima

Yapei Wu, Xingguang Peng, Demin Xu
{"title":"Identifying Variables Interaction for Black-box Continuous Optimization with Mutual Information of Multiple Local Optima","authors":"Yapei Wu, Xingguang Peng, Demin Xu","doi":"10.1109/SSCI44817.2019.9003021","DOIUrl":null,"url":null,"abstract":"Identifying the interaction of search variables of black-box optimization problem and exploiting the learned interaction structure back to optimization process is a very meaningful research topic. Evaluating the interaction between variables based on information theory is a popular and effective method. However, very little research pay attention to what kind of data can help identify interactions between variables. In this paper, we propose a method to identify the interaction between variables by using the local optima solutions of the objective function. First, a multimodal optimization algorithm is used to search for multiple local optima of the optimization problem. Then, hierarchical clustering is used to cluster and discretize local optima. Finally, the interaction between variables is quantified using the mutual information of local optima. Experimental results show that the proposed method can use the information of local optima to identify the interaction of search variables.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"32 1","pages":"2683-2689"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Identifying the interaction of search variables of black-box optimization problem and exploiting the learned interaction structure back to optimization process is a very meaningful research topic. Evaluating the interaction between variables based on information theory is a popular and effective method. However, very little research pay attention to what kind of data can help identify interactions between variables. In this paper, we propose a method to identify the interaction between variables by using the local optima solutions of the objective function. First, a multimodal optimization algorithm is used to search for multiple local optima of the optimization problem. Then, hierarchical clustering is used to cluster and discretize local optima. Finally, the interaction between variables is quantified using the mutual information of local optima. Experimental results show that the proposed method can use the information of local optima to identify the interaction of search variables.
多局部最优互信息下黑盒连续优化的变量识别交互
识别黑箱优化问题中搜索变量之间的交互关系,并将学习到的交互结构应用到优化过程中是一个非常有意义的研究课题。基于信息论的变量间相互作用评价是一种流行而有效的方法。然而,很少有研究关注什么样的数据可以帮助识别变量之间的相互作用。本文提出了一种利用目标函数的局部最优解来识别变量间相互作用的方法。首先,利用多模态优化算法搜索优化问题的多个局部最优点;然后,采用分层聚类方法对局部最优进行聚类和离散。最后,利用局部最优的互信息量化变量间的相互作用。实验结果表明,该方法可以利用局部最优信息识别搜索变量之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信