{"title":"Geometric limits of cyclic subgroups of\nSO0(1,k + 1) and SU(1,k + 1)","authors":"Sara Maloni, M. B. Pozzetti","doi":"10.2140/agt.2022.22.1461","DOIUrl":null,"url":null,"abstract":"We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO_0(1, k+1) and SU(1, k+1). We construct examples of sequences of subgroups of such groups G that converge algebraically and whose geometric limit strictly contains the algebraic limit, thus generalizing the example first described by Jorgensen for subgroups of SO_0(1,3). We also give necessary and sufficient conditions for a subgroup of SO_0(1, k+1) to arise as geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequence of representations of free groups, and applications of our constructions in that setting.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"20 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.1461","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study geometric limits of convex-cocompact cyclic subgroups of the rank 1 groups SO_0(1, k+1) and SU(1, k+1). We construct examples of sequences of subgroups of such groups G that converge algebraically and whose geometric limit strictly contains the algebraic limit, thus generalizing the example first described by Jorgensen for subgroups of SO_0(1,3). We also give necessary and sufficient conditions for a subgroup of SO_0(1, k+1) to arise as geometric limit of a sequence of cyclic subgroups. We then discuss generalizations of such examples to sequence of representations of free groups, and applications of our constructions in that setting.