Performance Analysis of Adaptive Beamforming Algorithms for Smart Antennas

Prerna Saxena, A.G. Kothari
{"title":"Performance Analysis of Adaptive Beamforming Algorithms for Smart Antennas","authors":"Prerna Saxena,&nbsp;A.G. Kothari","doi":"10.1016/j.ieri.2014.09.101","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, adaptive beamforming techniques for smart antennas based upon Least Mean Squares (LMS), Sample Matrix Inversion (SMI), Recursive Least Squares (RLS) and Conjugate Gradient Method (CGM) are discussed and analyzed. The beamforming performance is studied by varying the element spacing and the number of antenna array elements for each algorithm. These four algorithms are compared for their rate of convergence, beamforming and null steering performance (beamwidth, null depths and maximum side lobe level).</p></div>","PeriodicalId":100649,"journal":{"name":"IERI Procedia","volume":"10 ","pages":"Pages 131-137"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ieri.2014.09.101","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IERI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221266781400149X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

In this paper, adaptive beamforming techniques for smart antennas based upon Least Mean Squares (LMS), Sample Matrix Inversion (SMI), Recursive Least Squares (RLS) and Conjugate Gradient Method (CGM) are discussed and analyzed. The beamforming performance is studied by varying the element spacing and the number of antenna array elements for each algorithm. These four algorithms are compared for their rate of convergence, beamforming and null steering performance (beamwidth, null depths and maximum side lobe level).

智能天线自适应波束形成算法的性能分析
本文讨论和分析了基于最小均方差(LMS)、样本矩阵反演(SMI)、递推最小二乘法(RLS)和共轭梯度法(CGM)的智能天线自适应波束形成技术。通过改变各算法的单元间距和天线阵列单元数来研究波束形成性能。比较了这四种算法的收敛速度、波束形成和零导向性能(波束宽度、零深度和最大旁瓣电平)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信