On Automating XSEDE User Ticket Classification

Gwang Son, Victor Hazlewood, G. D. Peterson
{"title":"On Automating XSEDE User Ticket Classification","authors":"Gwang Son, Victor Hazlewood, G. D. Peterson","doi":"10.1145/2616498.2616549","DOIUrl":null,"url":null,"abstract":"The XSEDE ticket system, which is a help desk ticketing system, receives email and web-based problem reports (i.e., tickets) from users and these tickets can be manually grouped into predefined categories either by the ticket submitter or by operations staff. This manual process can be automated by using text classification algorithms such as Multinomial Naive Bayes (MNB) or Softmax Regression Neural Network (SNN). Ticket subjects, rather than whole tickets, were used to make an input word list along with a manual word group list to enhance accuracy. The text mining algorithms used the input word list to select input words in the tickets. Compared with the Matlab svm() function, MNB and SNN showed overall better accuracy (up to ~85.8% using two simultaneous category selection). Also, the service provider resource (i.e., system name) information could be extracted from the tickets with ~90% accuracy.","PeriodicalId":93364,"journal":{"name":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","volume":"65 1","pages":"41:1-41:7"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XSEDE16 : Diversity, Big Data, and Science at Scale : July 17-21, 2016, Intercontinental Miami Hotel, Miami, Florida, USA. Conference on Extreme Science and Engineering Discovery Environment (5th : 2016 : Miami, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2616498.2616549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The XSEDE ticket system, which is a help desk ticketing system, receives email and web-based problem reports (i.e., tickets) from users and these tickets can be manually grouped into predefined categories either by the ticket submitter or by operations staff. This manual process can be automated by using text classification algorithms such as Multinomial Naive Bayes (MNB) or Softmax Regression Neural Network (SNN). Ticket subjects, rather than whole tickets, were used to make an input word list along with a manual word group list to enhance accuracy. The text mining algorithms used the input word list to select input words in the tickets. Compared with the Matlab svm() function, MNB and SNN showed overall better accuracy (up to ~85.8% using two simultaneous category selection). Also, the service provider resource (i.e., system name) information could be extracted from the tickets with ~90% accuracy.
自动化XSEDE用户票证分类
XSEDE票务系统是一个帮助台票务系统,接收来自用户的电子邮件和基于web的问题报告(即票务),这些票务可以由票务提交者或操作人员手动分组到预定义的类别中。这个手动过程可以通过使用文本分类算法(如多项朴素贝叶斯(MNB)或Softmax回归神经网络(SNN))自动完成。为了提高准确性,我们使用票证主题,而不是整个票证,来制作一个输入词列表和一个手动词组列表。文本挖掘算法使用输入词列表来选择门票中的输入词。与Matlab支持向量机()函数相比,MNB和SNN总体上具有更好的准确率(在两个同时选择类别的情况下,准确率高达85.8%)。此外,服务提供者资源(即系统名称)信息可以以90%的准确率从票证中提取出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信