CNN Based Yeast Cell Segmentation in Multi-modal Fluorescent Microscopy Data

A. S. Aydin, Abhinandan Dubey, Daniel Dovrat, A. Aharoni, Roy Shilkrot
{"title":"CNN Based Yeast Cell Segmentation in Multi-modal Fluorescent Microscopy Data","authors":"A. S. Aydin, Abhinandan Dubey, Daniel Dovrat, A. Aharoni, Roy Shilkrot","doi":"10.1109/CVPRW.2017.105","DOIUrl":null,"url":null,"abstract":"We present a method for foreground segmentation of yeast cells in the presence of high-noise induced by intentional low illumination, where traditional approaches (e.g., threshold-based methods, specialized cell-segmentation methods) fail. To deal with these harsh conditions, we use a fully-convolutional semantic segmentation network based on the SegNet architecture. Our model is capable of segmenting patches extracted from yeast live-cell experiments with a mIOU score of 0.71 on unseen patches drawn from independent experiments. Further, we show that simultaneous multi-modal observations of bio-fluorescent markers can result in better segmentation performance than the DIC channel alone.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"23 1","pages":"753-759"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

We present a method for foreground segmentation of yeast cells in the presence of high-noise induced by intentional low illumination, where traditional approaches (e.g., threshold-based methods, specialized cell-segmentation methods) fail. To deal with these harsh conditions, we use a fully-convolutional semantic segmentation network based on the SegNet architecture. Our model is capable of segmenting patches extracted from yeast live-cell experiments with a mIOU score of 0.71 on unseen patches drawn from independent experiments. Further, we show that simultaneous multi-modal observations of bio-fluorescent markers can result in better segmentation performance than the DIC channel alone.
基于CNN的酵母细胞分割在多模态荧光显微镜数据
我们提出了一种酵母细胞前景分割的方法,在存在由故意低照度引起的高噪声的情况下,传统的方法(例如,基于阈值的方法,专门的细胞分割方法)失败。为了处理这些苛刻的条件,我们使用了基于SegNet架构的全卷积语义分割网络。我们的模型能够分割从酵母活细胞实验中提取的斑块,对独立实验中提取的未见斑块的mIOU分数为0.71。此外,我们发现生物荧光标记的同时多模态观察可以产生比单独的DIC通道更好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信