F. Babazadeh, M. Ahmadi-pajouh, Seyyed MohammadReza Hashemi Golpayegani
{"title":"A novel stretching and folding characterization method based on geometrical and physiological traits of chaotic and intermittent tracking signals","authors":"F. Babazadeh, M. Ahmadi-pajouh, Seyyed MohammadReza Hashemi Golpayegani","doi":"10.24200/sci.2023.61665.7429","DOIUrl":null,"url":null,"abstract":"– The specification of stretching and folding properties, particularly in time series, is of substantial interest. This study is sought to perceive the relationship between stretching and folding and irregular discontinuities in hand motion trajectories during target tracking tasks. In this regard, a new method is proposed based on compiling physiological characteristics and hand motion dynamics’ geometrical traits. Thus, five tracking conditions are designed in which participants are instructed to track different target motion patterns. In these experiments, sinusoidal and trapezoidal target movements with frequencies of 0.1 and 0.3 Hz, as well as pseudo-periodic target motion created by summing two sinusoids with frequencies of 0.117 and 0.278 Hz, are used as visual targets. The results illustrate that nonuniform discontinuities are noticeable properties of the hand motion trajectory. Also, the largest Lyapunov exponent, correlation dimension, and fractal dimension corroborate that the tracking attractor is low-dimensional and chaotic. Moreover, the results are compared with the curvature-based method, and its modified version is presented by taking advantage of the proposed method. As a result, through the suggested method, stretching and folding points are well discerned regardless of discontinuities. This method can deal with the systems with intermittency in both times-and state space.","PeriodicalId":21605,"journal":{"name":"Scientia Iranica","volume":"43 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Iranica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24200/sci.2023.61665.7429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
– The specification of stretching and folding properties, particularly in time series, is of substantial interest. This study is sought to perceive the relationship between stretching and folding and irregular discontinuities in hand motion trajectories during target tracking tasks. In this regard, a new method is proposed based on compiling physiological characteristics and hand motion dynamics’ geometrical traits. Thus, five tracking conditions are designed in which participants are instructed to track different target motion patterns. In these experiments, sinusoidal and trapezoidal target movements with frequencies of 0.1 and 0.3 Hz, as well as pseudo-periodic target motion created by summing two sinusoids with frequencies of 0.117 and 0.278 Hz, are used as visual targets. The results illustrate that nonuniform discontinuities are noticeable properties of the hand motion trajectory. Also, the largest Lyapunov exponent, correlation dimension, and fractal dimension corroborate that the tracking attractor is low-dimensional and chaotic. Moreover, the results are compared with the curvature-based method, and its modified version is presented by taking advantage of the proposed method. As a result, through the suggested method, stretching and folding points are well discerned regardless of discontinuities. This method can deal with the systems with intermittency in both times-and state space.
期刊介绍:
The objectives of Scientia Iranica are two-fold. The first is to provide a forum for the presentation of original works by scientists and engineers from around the world. The second is to open an effective channel to enhance the level of communication between scientists and engineers and the exchange of state-of-the-art research and ideas.
The scope of the journal is broad and multidisciplinary in technical sciences and engineering. It encompasses theoretical and experimental research. Specific areas include but not limited to chemistry, chemical engineering, civil engineering, control and computer engineering, electrical engineering, material, manufacturing and industrial management, mathematics, mechanical engineering, nuclear engineering, petroleum engineering, physics, nanotechnology.