Central extensions and Riemann-Roch theorem on algebraic surfaces

Pub Date : 2021-05-30 DOI:10.1070/SM9623
D. Osipov
{"title":"Central extensions and Riemann-Roch theorem on algebraic surfaces","authors":"D. Osipov","doi":"10.1070/SM9623","DOIUrl":null,"url":null,"abstract":"We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface X by means of the group of integers. By these central extensions and adelic transition matrices of a rank n locally free sheaf of O X -modules we obtain the local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf O nX . Two various calculations of this difference lead to the Riemann-Roch theorem on X (without the Noether formula).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/SM9623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study canonical central extensions of the general linear group over the ring of adeles on a smooth projective algebraic surface X by means of the group of integers. By these central extensions and adelic transition matrices of a rank n locally free sheaf of O X -modules we obtain the local (adelic) decomposition for the difference of Euler characteristics of this sheaf and the sheaf O nX . Two various calculations of this difference lead to the Riemann-Roch theorem on X (without the Noether formula).
分享
查看原文
代数曲面上的中心扩展与Riemann-Roch定理
利用整数群研究了光滑射影代数曲面X上阿德尔环上一般线性群的正则中心扩展。通过这些中心扩展和O X -模的n阶局部自由层的阿德利转移矩阵,我们得到了该层与O nX层欧拉特性差异的局部(阿德利)分解。对这种差异的两种不同的计算得出了关于X的黎曼-洛克定理(没有诺特公式)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信