Waleed M. M. El-Sayed, Hassan A. H. Ibrahim, U. Abdul-Raouf, M. El-Nagar
{"title":"Evaluation of Bioethanol Production from Ulva lactuca By Saccharomyces cerevisiae","authors":"Waleed M. M. El-Sayed, Hassan A. H. Ibrahim, U. Abdul-Raouf, M. El-Nagar","doi":"10.4172/2155-952X.1000226","DOIUrl":null,"url":null,"abstract":"Ulva lactuca acts a vital potential marine energy crop. Reducing sugars from U. lactuca were obtained and evaluated for the bioethanol production by Saccharomyces cerevisiae. The optimization process was investigated by Plackett-Burman experimental design followed by immobilization technique on supported solid materials. Results show that the sugar concentration, pH level and the inoculums size have a significant effect on the bioethanol production by S. cerevisiae to give concentration (12 ± 0.5 g/g of sugar/l) with conversion efficiency (47.1%). \n \nThe immobilization of yeast cells upon luffa pulp shows the highest bioethanol productivity (13.3 g/g of sugar/l) with conversion efficiency (52%). Therefore, the immobilized yeast upon luffa pulp was recommended in the current work. Moreover, the supportive luffa pulp was efficiently used and recycled for several times in the bioethanol production.","PeriodicalId":15156,"journal":{"name":"Journal of biotechnology & biomaterials","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology & biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-952X.1000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Ulva lactuca acts a vital potential marine energy crop. Reducing sugars from U. lactuca were obtained and evaluated for the bioethanol production by Saccharomyces cerevisiae. The optimization process was investigated by Plackett-Burman experimental design followed by immobilization technique on supported solid materials. Results show that the sugar concentration, pH level and the inoculums size have a significant effect on the bioethanol production by S. cerevisiae to give concentration (12 ± 0.5 g/g of sugar/l) with conversion efficiency (47.1%).
The immobilization of yeast cells upon luffa pulp shows the highest bioethanol productivity (13.3 g/g of sugar/l) with conversion efficiency (52%). Therefore, the immobilized yeast upon luffa pulp was recommended in the current work. Moreover, the supportive luffa pulp was efficiently used and recycled for several times in the bioethanol production.