Marios Iliofotou, Brian Gallagher, Tina Eliassi-Rad, Guowu Xie, M. Faloutsos
{"title":"Profiling-By-Association: a resilient traffic profiling solution for the internet backbone","authors":"Marios Iliofotou, Brian Gallagher, Tina Eliassi-Rad, Guowu Xie, M. Faloutsos","doi":"10.1145/1921168.1921171","DOIUrl":null,"url":null,"abstract":"Profiling Internet backbone traffic is becoming an increasingly hard problem since users and applications are avoiding detection using traffic obfuscation and encryption. The key question addressed here is: Is it possible to profile traffic at the backbone without relying on its packet and flow level information, which can be obfuscated? We propose a novel approach, called Profiling-By-Association (PBA), that uses only the IP-to-IP communication graph and information about some applications used by few IP-hosts (a.k.a. seeds). The key insight is that IP-hosts tend to communicate more frequently with hosts involved in the same application forming communities (or clusters). Profiling few members within a cluster can \"give away\" the whole community. Following our approach, we develop different algorithms to profile Internet traffic and evaluate them on real-traces from four large backbone networks. We show that PBA's accuracy is on average around 90% with knowledge of only 1% of all the hosts in a given data set and its runtime is on the order of minutes (≈ 5).","PeriodicalId":20688,"journal":{"name":"Proceedings of The 6th International Conference on Innovation in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 6th International Conference on Innovation in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1921168.1921171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Profiling Internet backbone traffic is becoming an increasingly hard problem since users and applications are avoiding detection using traffic obfuscation and encryption. The key question addressed here is: Is it possible to profile traffic at the backbone without relying on its packet and flow level information, which can be obfuscated? We propose a novel approach, called Profiling-By-Association (PBA), that uses only the IP-to-IP communication graph and information about some applications used by few IP-hosts (a.k.a. seeds). The key insight is that IP-hosts tend to communicate more frequently with hosts involved in the same application forming communities (or clusters). Profiling few members within a cluster can "give away" the whole community. Following our approach, we develop different algorithms to profile Internet traffic and evaluate them on real-traces from four large backbone networks. We show that PBA's accuracy is on average around 90% with knowledge of only 1% of all the hosts in a given data set and its runtime is on the order of minutes (≈ 5).