{"title":"Microscopic Crystal Phase Inspired Modeling of Zr Concentration Effects in Hf1-xZrxO2Thin Films","authors":"A. Saha, B. Grisafe, S. Datta, S. Gupta","doi":"10.23919/VLSIT.2019.8776533","DOIUrl":null,"url":null,"abstract":"In this paper, we theoretically and experimentally investigate the Zr concentration dependent crystal phase transition of Hf<inf>1-</inf><inf>x</inf>Z<inf>x</inf>O<inf>2</inf> (HZO) and the corresponding evolution of dielectric (DE), ferroelectric (FE) and anti-ferroelectric (AFE) characteristics. Providing the microscopic insights of strain induced crystal phase transformations, we propose a physics based model that shows good agreement with our experimental results for 10nm Hf<inf>1-x</inf>Z<inf>x</inf>O<inf>2</inf> (with <tex>$\\text{x}=0$</tex> through 1). Utilizing our model, we analyze HZO-FET operation as a non-volatile memory device for different x.","PeriodicalId":6752,"journal":{"name":"2019 Symposium on VLSI Technology","volume":"83 1","pages":"T226-T227"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIT.2019.8776533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we theoretically and experimentally investigate the Zr concentration dependent crystal phase transition of Hf1-xZxO2 (HZO) and the corresponding evolution of dielectric (DE), ferroelectric (FE) and anti-ferroelectric (AFE) characteristics. Providing the microscopic insights of strain induced crystal phase transformations, we propose a physics based model that shows good agreement with our experimental results for 10nm Hf1-xZxO2 (with $\text{x}=0$ through 1). Utilizing our model, we analyze HZO-FET operation as a non-volatile memory device for different x.