{"title":"Optimal and algorithmic norm regularization of random matrices","authors":"Vishesh Jain, A. Sah, Mehtaab Sawhney","doi":"10.1090/proc/15964","DOIUrl":null,"url":null,"abstract":"Let $A$ be an $n\\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\\exp(-\\Omega(\\epsilon n))$ in the choice of $A$, finds an $\\epsilon n \\times \\epsilon n$ sub-matrix such that zeroing it out results in $\\widetilde{A}$ with \\[\\|\\widetilde{A}\\| = O\\left(\\sqrt{n/\\epsilon}\\right).\\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let $A$ be an $n\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\exp(-\Omega(\epsilon n))$ in the choice of $A$, finds an $\epsilon n \times \epsilon n$ sub-matrix such that zeroing it out results in $\widetilde{A}$ with \[\|\widetilde{A}\| = O\left(\sqrt{n/\epsilon}\right).\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.