Optimal and algorithmic norm regularization of random matrices

Vishesh Jain, A. Sah, Mehtaab Sawhney
{"title":"Optimal and algorithmic norm regularization of random matrices","authors":"Vishesh Jain, A. Sah, Mehtaab Sawhney","doi":"10.1090/proc/15964","DOIUrl":null,"url":null,"abstract":"Let $A$ be an $n\\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\\exp(-\\Omega(\\epsilon n))$ in the choice of $A$, finds an $\\epsilon n \\times \\epsilon n$ sub-matrix such that zeroing it out results in $\\widetilde{A}$ with \\[\\|\\widetilde{A}\\| = O\\left(\\sqrt{n/\\epsilon}\\right).\\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $A$ be an $n\times n$ random matrix whose entries are i.i.d. with mean $0$ and variance $1$. We present a deterministic polynomial time algorithm which, with probability at least $1-2\exp(-\Omega(\epsilon n))$ in the choice of $A$, finds an $\epsilon n \times \epsilon n$ sub-matrix such that zeroing it out results in $\widetilde{A}$ with \[\|\widetilde{A}\| = O\left(\sqrt{n/\epsilon}\right).\] Our result is optimal up to a constant factor and improves previous results of Rebrova and Vershynin, and Rebrova. We also prove an analogous result for $A$ a symmetric $n\times n$ random matrix whose upper-diagonal entries are i.i.d. with mean $0$ and variance $1$.
随机矩阵的最优和算法范数正则化
设$A$为一个$n\times n$随机矩阵,其项为i.i.d.,均值为$0$,方差为$1$。我们提出了一种确定性多项式时间算法,该算法在$A$的选择中至少以$1-2\exp(-\Omega(\epsilon n))$的概率找到$\epsilon n \times \epsilon n$子矩阵,使得在$\widetilde{A}$中使用\[\|\widetilde{A}\| = O\left(\sqrt{n/\epsilon}\right).\]将其归零。我们的结果是最优的,直到一个常数因子,并改进了以前的Rebrova和Vershynin以及Rebrova的结果。对于一个对称的$n\times n$随机矩阵$A$,我们也证明了一个类似的结果,该矩阵的上对角线项为i.i.d,均值为$0$,方差为$1$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信