Investigation on vibro-impacts of driveline system based on a nonlinear clearance element with time-varying stiffness and oil-squeeze damping

IF 1.9 4区 工程技术 Q2 ACOUSTICS
Yuanfeng Xia, J. Pang
{"title":"Investigation on vibro-impacts of driveline system based on a nonlinear clearance element with time-varying stiffness and oil-squeeze damping","authors":"Yuanfeng Xia, J. Pang","doi":"10.1115/1.4053477","DOIUrl":null,"url":null,"abstract":"\n The transient vibro-impacts induced by clearance between the connected rotors in driveline system easily causes serious transient noise and vibration, especially between the gear teeth with backlash. To analyze the transient vibro-impacts of the driveline system excited by a step-down engine torque, a new piecewise nonlinear clearance element with time-varying stiffness and oil squeeze damping is proposed, and an 8 degree-of-freedom lumped parameters model with the new piecewise nonlinear clearance elements is established. The transient vibro-impact phenomena of the vehicle driveline during fast disengagement of the clutch are numerically simulated. Colormaps of angular acceleration and vibro-impact force shows the difference of frequency components from transient impact to stable tooth-meshing. The phase plane reveals the phenomenon of multiple impacts and rebounds in each transient impact, and shows the relationship between the relative contact displacement and velocity. The frequency responses of the angular velocity, angular acceleration and vibro-impact forces with time-varying stiffness and linear stiffness are compared respectively. Compared with the widely used clearance element with piecewise linear stiffness, the new nonlinear clearance element with the piecewise nonlinear time-varying stiffness can better reveal the transient vibro-impact responses between the driving and driven gears. Lastly, the transient vibro-impact results of driveline system are verified by the vehicle experiments.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"11 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4053477","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

Abstract

The transient vibro-impacts induced by clearance between the connected rotors in driveline system easily causes serious transient noise and vibration, especially between the gear teeth with backlash. To analyze the transient vibro-impacts of the driveline system excited by a step-down engine torque, a new piecewise nonlinear clearance element with time-varying stiffness and oil squeeze damping is proposed, and an 8 degree-of-freedom lumped parameters model with the new piecewise nonlinear clearance elements is established. The transient vibro-impact phenomena of the vehicle driveline during fast disengagement of the clutch are numerically simulated. Colormaps of angular acceleration and vibro-impact force shows the difference of frequency components from transient impact to stable tooth-meshing. The phase plane reveals the phenomenon of multiple impacts and rebounds in each transient impact, and shows the relationship between the relative contact displacement and velocity. The frequency responses of the angular velocity, angular acceleration and vibro-impact forces with time-varying stiffness and linear stiffness are compared respectively. Compared with the widely used clearance element with piecewise linear stiffness, the new nonlinear clearance element with the piecewise nonlinear time-varying stiffness can better reveal the transient vibro-impact responses between the driving and driven gears. Lastly, the transient vibro-impact results of driveline system are verified by the vehicle experiments.
基于时变刚度和挤压油阻尼非线性间隙单元的传动系统振动冲击研究
传动系统中转子间间隙引起的瞬态振动冲击容易引起严重的瞬态噪声和振动,特别是带间隙的齿轮齿间。为了分析发动机转矩降阶激励下传动系统的瞬态振动冲击,提出了一种具有时变刚度和挤压阻尼的分段非线性间隙单元,并建立了包含该单元的8自由度集总参数模型。对汽车传动系在离合器快速脱离过程中的瞬态振动冲击现象进行了数值模拟。角加速度和振动冲击力的颜色图显示了瞬态碰撞与稳定齿啮合频率分量的差异。相平面揭示了每次瞬态碰撞时的多次碰撞和回弹现象,并显示了相对接触位移与速度的关系。分别比较了时变刚度和线性刚度下的角速度、角加速度和振动冲击力的频率响应。与目前广泛使用的分段线性刚度间隙单元相比,采用分段非线性时变刚度的非线性间隙单元能更好地反映主从齿轮之间的瞬态振动冲击响应。最后,通过整车试验对传动系统瞬态振动冲击结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信