{"title":"Positivity of Curvature On Manifolds With Boundary","authors":"Tsz-Kiu Aaron Chow","doi":"10.1093/IMRN/RNAB071","DOIUrl":null,"url":null,"abstract":"Consider a compact manifold $M$ with smooth boundary $\\partial M$. Suppose that $g$ and $\\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\\partial M$ and agrees with $\\tilde{g}$ in a neighborhood of $\\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Consider a compact manifold $M$ with smooth boundary $\partial M$. Suppose that $g$ and $\tilde{g}$ are two Riemannian metrics on $M$. We construct a family of metrics on $M$ which agrees with $g$ outside a neighborhood of $\partial M$ and agrees with $\tilde{g}$ in a neighborhood of $\partial M$. We prove that the family of metrics preserves various natural curvature conditions under suitable assumptions on the boundary data. Moreover, under suitable assumptions on the boundary data, we can deform a metric to one with totally geodesic boundary while preserving various natural curvature conditions.