Laser fragmentation of silicon microparticles in liquids for solution of biophotonics problems

IF 0.9 4区 工程技术 Q3 Engineering
V. Nesterov, O. Sokolovskaya, L. Golovan, D. Shuleiko, A. Kolchin, D. Presnov, P. Kashkarov, A. Khilov, D. Kurakina, M. Kirillin, E. Sergeeva, S. Zabotnov
{"title":"Laser fragmentation of silicon microparticles in liquids for solution of biophotonics problems","authors":"V. Nesterov, O. Sokolovskaya, L. Golovan, D. Shuleiko, A. Kolchin, D. Presnov, P. Kashkarov, A. Khilov, D. Kurakina, M. Kirillin, E. Sergeeva, S. Zabotnov","doi":"10.1070/QEL17984","DOIUrl":null,"url":null,"abstract":"The possibility of manufacturing silicon nanoparticles by picosecond laser fragmentation of silicon microparticles in water is analysed. It is shown that for fragmentation duration of 40 min, the dependence of the average sizes of particles on the initial mass concentration of the micropowder varied in the range of 0.5 – 12 mg mL−1 is nonmonotonic, with the maximum average size of 165 nm being achieved at a concentration of 5 mg mL−1. To explain the obtained result, the simulation of propagation of a focused laser beam in a scattering suspension of silicon microparticles is performed for their different mass concentrations. It is demonstrated that at concentrations not exceeding 5 mg mL−1, fragmentation occurs in the paraxial region of the beam when it propagates deep into the cuvette with a suspension, while at higher concentrations it occurs primarily in the superficial layer owing to strong extinction. Calculations results allow the experimental features of the formation of silicon nanoparticles to be explained. Spectrophotometry measurements on suspensions of nanoparticles obtained at the initial concentration of microparticles of 12 mg mL−1 are compared with the theoretical estimates of the absorption and scattering coefficients obtained in the framework of the Mie theory. Measured optical properties indicate the potential of using fragmented nanoparticles as scattering and/or absorbing contrast agents in optical imaging of biological objects.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/QEL17984","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The possibility of manufacturing silicon nanoparticles by picosecond laser fragmentation of silicon microparticles in water is analysed. It is shown that for fragmentation duration of 40 min, the dependence of the average sizes of particles on the initial mass concentration of the micropowder varied in the range of 0.5 – 12 mg mL−1 is nonmonotonic, with the maximum average size of 165 nm being achieved at a concentration of 5 mg mL−1. To explain the obtained result, the simulation of propagation of a focused laser beam in a scattering suspension of silicon microparticles is performed for their different mass concentrations. It is demonstrated that at concentrations not exceeding 5 mg mL−1, fragmentation occurs in the paraxial region of the beam when it propagates deep into the cuvette with a suspension, while at higher concentrations it occurs primarily in the superficial layer owing to strong extinction. Calculations results allow the experimental features of the formation of silicon nanoparticles to be explained. Spectrophotometry measurements on suspensions of nanoparticles obtained at the initial concentration of microparticles of 12 mg mL−1 are compared with the theoretical estimates of the absorption and scattering coefficients obtained in the framework of the Mie theory. Measured optical properties indicate the potential of using fragmented nanoparticles as scattering and/or absorbing contrast agents in optical imaging of biological objects.
液体中硅微粒的激光破碎,用于解决生物光子学问题
分析了利用皮秒激光粉碎水中硅微粒制备纳米硅颗粒的可能性。结果表明,在破碎时间为40 min的情况下,颗粒的平均粒径与微粉初始质量浓度在0.5 ~ 12 mg mL−1范围内呈非单调关系,在浓度为5 mg mL−1时,颗粒的平均粒径最大可达165 nm。为了解释得到的结果,模拟了聚焦激光束在不同质量浓度的硅微粒散射悬浮液中的传播。结果表明,在浓度不超过5 mg mL−1的情况下,当光束与悬浮液一起传播到试管深处时,碎片发生在光束的近轴区域,而在较高浓度下,由于强消光,碎片主要发生在浅层。计算结果可以解释硅纳米颗粒形成的实验特征。在初始浓度为12 mg mL−1的纳米颗粒悬浮液上的分光光度法测量结果与在Mie理论框架下获得的吸收和散射系数的理论估计进行了比较。测量的光学性质表明,在生物物体的光学成像中,使用碎片化纳米颗粒作为散射和/或吸收造影剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Electronics
Quantum Electronics 工程技术-工程:电子与电气
CiteScore
3.00
自引率
11.10%
发文量
95
审稿时长
3-6 weeks
期刊介绍: Quantum Electronics covers the following principal headings Letters Lasers Active Media Interaction of Laser Radiation with Matter Laser Plasma Nonlinear Optical Phenomena Nanotechnologies Quantum Electronic Devices Optical Processing of Information Fiber and Integrated Optics Laser Applications in Technology and Metrology, Biology and Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信