{"title":"Comparative Analysis of Performance Characteristics of CI Engine with and without HHO Gas (Brown Gas)","authors":"G. A. Gohar, H. Raza","doi":"10.4172/2167-7670.1000172","DOIUrl":null,"url":null,"abstract":"Internal combustion engine is used in daily life activity. Fossil fuels are primary fuels which are used in IC engines because of increasing consumption day by day its alarming that these will deplete in near future. Researchers in field of inter combustion trying to use alternate fuels to fulfill energy demand of IC engine. Among the others, hydrogen is capturing attention as alternate fuel in engine for proper combustion without smoke as there is no carbon is present in it. In this article, hydroxy (HHO) gas has many excellent combustion properties that can be used for improving performance characteristics of diesel-fired Compression Ignition (CI) engines. Brown gas (HHO) was produced by using the electrolysis process with KOH(aq) as catalyst with stainless steel electrodes in a leak proof plexiglass reactor was presented in ongoing piece of writing. Produced gas is used as supplementary fuel in inlet manifold of engine test bed (modal#TQ200) which has one cylinder, air cooled, four stroke compressed ignition. Performance characteristics of engine were recorded under the same test condition with and without installation of HHO generator. Experimental results were taken over the range of speed from 1950 to 3450 rpm using hydraulic dynamometer at constant load condition of torque 2 N-m. Different engine performance parameters were calculated like engine brake power, the brake specific fuel consumption, the thermal efficiency, the mechanical efficiency and the specific fuel consumption with or without HHO gas. The results clearly indicated that engine’s brake power, thermal efficiency and mechanical efficiency increased 22%, 47% 24%, respectively while engine’s brake specific fuel consumption and specific fuel consumption (SFC) decreased upto maximum value of 35% and 27% respectively compared with engine operating without HHO generator. Main objectives of this research are to decrease the fuel consumption and increase power and efficiencies of CI engine and successfully achieved as witnessed in results.","PeriodicalId":7286,"journal":{"name":"Advances in Automobile Engineering","volume":"43 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Automobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2167-7670.1000172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Internal combustion engine is used in daily life activity. Fossil fuels are primary fuels which are used in IC engines because of increasing consumption day by day its alarming that these will deplete in near future. Researchers in field of inter combustion trying to use alternate fuels to fulfill energy demand of IC engine. Among the others, hydrogen is capturing attention as alternate fuel in engine for proper combustion without smoke as there is no carbon is present in it. In this article, hydroxy (HHO) gas has many excellent combustion properties that can be used for improving performance characteristics of diesel-fired Compression Ignition (CI) engines. Brown gas (HHO) was produced by using the electrolysis process with KOH(aq) as catalyst with stainless steel electrodes in a leak proof plexiglass reactor was presented in ongoing piece of writing. Produced gas is used as supplementary fuel in inlet manifold of engine test bed (modal#TQ200) which has one cylinder, air cooled, four stroke compressed ignition. Performance characteristics of engine were recorded under the same test condition with and without installation of HHO generator. Experimental results were taken over the range of speed from 1950 to 3450 rpm using hydraulic dynamometer at constant load condition of torque 2 N-m. Different engine performance parameters were calculated like engine brake power, the brake specific fuel consumption, the thermal efficiency, the mechanical efficiency and the specific fuel consumption with or without HHO gas. The results clearly indicated that engine’s brake power, thermal efficiency and mechanical efficiency increased 22%, 47% 24%, respectively while engine’s brake specific fuel consumption and specific fuel consumption (SFC) decreased upto maximum value of 35% and 27% respectively compared with engine operating without HHO generator. Main objectives of this research are to decrease the fuel consumption and increase power and efficiencies of CI engine and successfully achieved as witnessed in results.